
VirtualComponent: a Mixed-Reality Tool

for Designing and Tuning Breadboarded Circuits

Yoonji Kim Youngkyung Choi Hyein Lee

Industrial Design, KAIST Industrial Design, KAIST Industrial Design, KAIST
Daejeon, Republic of Korea Daejeon, Republic of Korea Daejeon, Republic of Korea
yoonji.kim@kaist.ac.kr youngkyung.choi@kaist.ac.kr hyein.l@kaist.ac.kr

Geehyuk Lee Andrea Bianchi
School of Computing, KAIST Industrial Design, KAIST
Daejeon, Republic of Korea Daejeon, Republic of Korea

geehyuk@gmail.com andrea@kaist.ac.kr

Figure 1: VirtualComponent allows placing and tuning electrical components in software, while the underlying physical circuit
reflects these changes in real-time. Both external tools (OpenScopeMZ) and custom modules can be used as virtual components
when plugged into the breadboard.

ABSTRACT
Prototyping electronic circuits is an increasingly popular activity,
supported by researchers, who develop toolkits to improve the
design, debugging, and fabrication of electronics. Although past
work mainly dealt with circuit topology, in this paper we propose
a system for determining or tuning the values of the circuit com-
ponents. Based on the results of a formative study with seven-
teen makers, we designed VirtualComponent, a mixed-reality tool
that allows users to digitally place electronic components on a real
breadboard, tune their values in software, and see these changes
applied to the physical circuit in real-time. VirtualComponent is
composed of a set of plug-and-play modules containing banks of
components, and a custom breadboard managing the connections

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05…$15.00
https://doi.org/10.1145/3290605.3300407

and components’ values. Through demonstrations and the results
of an informal study with twelve makers, we show that Virtual-
Component is easy to use and allows users to test components’
value configurations with little effort.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms.

KEYWORDS
Physical computing; circuits; component tuning; toolkit
ACM Reference Format:
Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee, and Andrea Bianchi.
2019. VirtualComponent: a Mixed-Reality Tool for Designing and Tuning
Breadboarded Circuits. In CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3290605.3300407

1 INTRODUCTION
Circuit design is a complex activity that requires knowledge of
electronics and the ability to integrate circuits with software and
other hardware [27]. Thanks to the MakerMovement [12] and the
growing popularity of DIY websites, circuit design has become

https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3290605.3300407
http:978-1-4503-5970-2/19/05�$15.00
mailto:permissions@acm.org
mailto:andrea@kaist.ac.kr
mailto:geehyuk@gmail.com

accessible to large communities of makers, hobbyists, and inter-
action designers [25]. Motivated by this growing community, re-
searchers have developed several systems to assist novice and ad-
vanced users in designing circuits. For example, researchers inves-
tigated tools that reduce the complexity of circuit design by us-
ing modular and self-contained programmable blocks [e.g., 3, 6, 9],
platforms and materials for easier circuit fabrication [e.g., 15, 17,
30], and tools for better real-time diagnostic and visualization [e.g.,
8, 10, 24, 33].

These efforts mainly help users design or debug the circuit topol-
ogy—the network describing how electronic components are con-
nected. However, topology issues are often partially mitigated by
the numerous open-source repositories of circuits readily available
online (e.g., Sparkfun1, AdaFruit2), and by widespread and popu-
lar communities [25] where makers can learn about electronics and
share their results (e.g., Fab Labs3, Github4, Instructables5, MAKE6,
etc.). Therefore, we question whether issues related to the topol-
ogy are the only challenges for most makers when building cir-
cuits; perhaps other problems are common. Following our hypoth-
esis and seeking to better understand the real needs of makers en-
gaged in circuit design, we conducted a set of formative interviews
with seventeen participants of various expertise levels. We found
evidence that makers spend a considerable portion of the circuit
debugging time working on topological aspects of the circuit and
trying to select or tune the values of specific components. This com-
plementary aspect of the circuit-design process is laborious and
error-prone, and it often cannot be automated with software (e.g.,
SPICE) as simulations of nonideal components are complex [19].

In this paper, we present VirtualComponent (Figure 1), an in-
teractive mixed-reality system that allows makers to create bread-
boarded circuits by combining physical and virtual components.
Users can place virtual components on a breadboard using an aug-
mented reality (AR) application. They can then adjust their values
through software, and the changes are immediately reflected at the
electrical level on the physical breadboard. In the rest of this pa-
per, we describe in detail the formative study that motivated Vir-
tualComponent’s design. We then present several cases that ben-
efit from VirtualComponent’s software-hardware integration and
demonstrate, with an informal user study, that users can save de-
bugging time while freely exploring design alternatives. Finally,
we discuss the system limitations and future directions.

2 RELATED WORK

2.1	 Tools for circuit design and debugging
While solderless breadboards have been the de facto standard for
circuit prototyping since the 1970s, researchers and companies have
started adding digital functionalities to breadboards to create new
powerful prototyping tools. Products like the Digilent Electron-
ics Explorer7 and the STEMTera8 are examples of commercially

1https://github.com/sparkfun
2https://github.com/adafruit
3https://www.fablabs.io
4https://github.com
5https://www.instructables.com
6https://makezine.com
7https://digilentinc.com
8https://stemtera.com

available smart breadboards. In research, ToastBoard [8], the Visi-
ble Breadboard [18], Bifröst [16], and CircuitSense [32] are exam-
ples of augmented breadboards that improve debugging with bet-
ter analysis and visualization of the circuit electrical status. Toast-
Board [8] can visualize in real time the voltage measurement across
an entire breadboard and automatically diagnose specific classes
of circuits. The Visible Breadboard [18] allows users to create and
debug circuits on a custom grid of connectors that can be digi-
tally controlled and provide voltage information through visual
feedback. Bifröst [16] is an integrated hardware and software de-
bugging environment for capturing programs and electrical behav-
iors of an embedded system. Finally, CircuitSense [32] is a bread-
board capable of automatically recognizing electronic components
placed on it. These systems speed up the process of creating and
debugging circuits with better visualization and diagnostics. How-
ever, the proposed features mainly address the circuit topology,
rather than supporting users’ exploration of components’ values.

Perhaps the systems that currently better address circuit-design
issues beyond topology are Scanalog [24] and VISIR [26]. However,
Scanalog exclusively deals with high-level modules that can be
logically tweaked by programming logical blocks, rather than pas-
sive components such as resistors, capacitors, and inductors. More-
over, Scanalog does not support the physical component place-
ment of logical blocks on a breadboard or other physical work-
bench. VISIR allows the remote wiring and measuring of electronic
circuits on a virtual breadboard using a relay switching matrix con-
nected to banks of physical components. However, VISIR’s users
cannot tweak the values of individual components nor can they
access the underlying physical breadboard, making it impossible
to mix software-placed components with physical ones. Our work
differs from these two because we focus on supporting the digi-
tal placement and tuning of passive components for breadboarded
circuits through direct and physical manipulations.

2.2	 Hardware and software toolkits for
reducing complexity

Faster and simpler circuit design can be achieved through hard-
ware and software abstractions that hide the implementation and
construction details. Hardware abstraction is achieved using mod-
ular circuit-blocks that can be connected and programmed with
high-level languages. Examples of this approach include Phidgets
[9], Microsoft’s .NET Gadgeteers and DataFlow [6, 29]—all provid-
ing hardware-software integration with custom objects and blocks
interoperability. BitBlox [7] extends the concept of widgets to the
breadboard itself, with subcircuits placed on color-coded bread-
board modules.

Software abstraction can also reduce the underlying hardware’s
complexity. Software can directly interface with the hardware to
provide simple, direct control of sensors from a computer [22],
or even provide fully integrated authoring environments that al-
low users to design, test, and analyze complex and extensible pro-
totypes without low-level hardware knowledge [10, 11, 24]. Al-
ternatively, software can simplify micro-controller programming
through graphical programming languages [2, 14, 21] and trigger-
actions rule-based behaviors [1]. Our work differs from all the
above because we intend to support makers with full control of the

http:8https://stemtera.com
http:7https://digilentinc.com
http:6https://makezine.com
http:5https://www.instructables.com
http:4https://github.com
http:3https://www.fablabs.io

circuit design and its components rather than providing a layer of
abstraction.

2.3 Tools for improved fabrication of circuits
To simplify and speed up the process of creating physical circuit
prototypes, researchers explored toolchains that leverage common
printers and conductive materials. The Untoolkit [17], Inkjet Cir-
cuits [15], Circuit Stickers [13], PaperPulse [20], and Printem [5]
are examples of pipelines that support the fast creation of com-
plex and multilayered circuits by printing them on paper with con-
ductive ink or on copper substrates. CircuitStack [30] combines
the flexibility of ordinary solderless breadboard with the accuracy
and speed of printed circuits, by stacking layers of circuits printed
with conductive ink on paper placed underneath a breadboard that
houses the components. The authors show that this system is easily
reconfigurable, accurate, and supports faster assembly of circuits.
Finally, researchers have also extended these tools to physical ob-
jects by creating methods that let circuits and electronics be em-
bedded directly in objects. SurfCircuit [28] integrates circuits in 3D
printed models, while Plain2Fun [31] enables users to design cir-
cuits directly onto the surfaces of ordinary objects. Overall, these
works demonstrate how better software-hardware integration sim-
plifies circuit design and fabrication. Our work follows this inte-
gration approach, but we aim to support makers with a tool that
helps them select the circuits’ components values rather than their
topology.

3 FORMATIVE STUDY
The tools described in the related work mainly assist makers in de-
signing and debugging circuit topology, such as determining how
components should connect and how the current flows across the
circuit’s nodes. Reflecting on our experience as makers, however,
we genuinely question whether nontopological aspects of the cir-
cuit design may also play a significant challenge.

To answer this question, we conducted a formative study of
semistructured interviews with makers, aiming to identify typical
design activities, common pitfalls, and needs. We asked them to
describe a past project, the process for designing the circuit, how
components were selected, and whether software simulation was
used. We recruited 17 makers (four females) aged 20-32 (M: 25, SD:

3.33) and split them into two groups (novice and advanced) accord-
ing to their level of experience and education (see Table 1). All par-
ticipants hold a bachelor degree in engineering, industrial design,
or computer science, and they are currently either graduate stu-
dents or university employees. Novice makers have at most three
years of experience, and advanced makers have four or more years
of experience or are currently pursuing a graduate degree in elec-
tronic engineering. Participants were compensated with nine USD
for their time.

3.1 Interviews Findings
We collected four hours of interviews transcribed and analyzed
with an affinity diagram. Despite the different levels of expertise,
both novice and advanced makers shared similar comments and ex-
periences. Novice participants expressed a mix of concerns about
topological challenges (e.g., wiring) and the difficulties of selecting
the right components’ values, but they also explained that the over-
all process is relatively straightforward because schematics and
breadboard diagrams are readily available on internet websites and
in books (N2, N3, N5, A15, A16). For example, five participants (N6,
A9, A13, A14) explained that they make circuits from standalone
modules purchased online, which are well documented with exam-
ples. With the exception of two advanced makers (A12, A16) who
start the process from a simulation, all other participants said they
directly port the circuit schematics to a breadboard and tune the
components if needed. All participants remarked that many errors
can occur at this stage of the process (e.g., wrong wiring, faulty
components, wrong values), requiring time-consuming debugging
with an oscilloscope (N6, A11). For example, N5 commented, “When
testing on the breadboard, many problems can occur because of
wrong wiring connections. Those are difficult!” while N7 expressed
similar frustration by saying, “Wiring was an issue because I am
not familiar with it. When there was a problem due to wiring, I
was not able to figure out what caused it.” Although wiring prob-
lems are common among beginners [4], wiring issues can usually
be solved with a bit of experience using existing debugging tools,
as pointed out by N3: “I had to use a multimeter to test wiring
connections because of many wiring problems.”

Beyond wiring issues, makers reported spending considerable
time determining and tuning the value of specific components (e.g.,

Table 1: Details about the makers participating in the formative study.

Participant Level Gender Age Position Major Years experience Simulation software

N1
N2
N3
N4
N5
N6
N7
N8

Novice
Novice
Novice
Novice
Novice
Novice
Novice
Novice

M
M
M
M
M
M
F
M

29
20
21
23
23
23
32
22

MS student
Undergrad student
Undergrad student
Undergrad student
Undergrad student
Undergrad student

PhD student
Undergrad student

Nuclear Eng.
Electronic Eng.
Electronic Eng.
Mechanical Eng.
Mechanical Eng.

Material Science Eng.
Industrial Design
Mechanical Eng.

3
0.5
2
1
1
1
2
2

-
Fritzing

-
-

Fritzing
-

Fritzing
-

A9
A10
A11
A12
A13
A14
A15
A16
A17

Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced
Advanced

M
F
F
M
M
M
M
M
F

26
25
25
25
31
24
28
23
25

MS student
MS student
MS student
MS student

Fab lab admin
MS student
PhD student

Undergrad student
MS student

Electronic Eng.
Electronic Eng.
Electronic Eng.
Electronic Eng.
Mechanical Eng.
Mechanical Eng.
Computer Science
Mechanical Eng.
Industrial Design

3
2
2
2
8
4
4
5
7

PADS
PADS

LabVIEW
OrCAD

Many SW
Spice
Eagle
Eagle

-

resistors, capacitors, inductors) either because they are not indi-
cated in the examples, or because they are coupled to other parts
of the circuit. For example, N7 commented: “I search for the value
on the internet but if I cannot find any solution, I change the value
several times until the circuit works.” Generally, advanced makers
initially select these values based on their experience or through
calculations, and beginners seek help from peers or online commu-
nities. Regardless of experience, all makers empirically tune these
values once the components are placed in the breadboard, depend-
ing on what components are at hand or on the intended result. For
example, advanced maker A13 commented that he “first search cir-
cuits online then test. They usually work after some tuning itera-
tions.”

Despite the apparent simplicity of the tuning process, makers
agree that it is time consuming and error prone. In fact, compo-
nents’ values cannot always be computed or simulated. Specifi-
cally, the parameters for active components (e.g., operational am-
plifiers, transistors, etc.) and the readings from sensors cannot be
easily estimated at the design table [19]. For example, maker A17
described how she was unable to compute the optimal value of a
resistor to be used with a force sensing resistor (e.g., FSR) without
knowing the force applied in advance. She finally found a suitable
value by trial-and-error. Maker A15 described his attempt to filter
sensor data with a low-pass filter, which required empirically se-
lecting the cutoff frequency using a potentiometer. Several makers
also remarked that components are not always readily available,
which slows down the overall development: “I ordered some parts
to test, but they did not work… so I had to wait two or three more
days for the delivery of another order” (A9).

In summary, our findings show that determining or tuning the
value of components in a circuit is an unaddressed need. A tool
to solve this issue should leverage on direct input and immediate
output (e.g., placing parts on a physical breadboard and real-time
execution) rather than a simulation to support experimentation
with different components and values. The system should be able
to handle multiple components simultaneously and provide a bank
of different components and values to address various situations
and avoid deadlocks.

4	 VIRTUAL COMPONENT OVERVIEW AND
WALKTHROUGH

VirtualComponent is a modular mixed-reality tool that allows users
to build a breadboarded circuit with a mix of physical and virtual
components. Using an augmented-reality interface, users can place
virtual components on a breadboard and then modify their values
and properties in software. These actions are immediately reflected
at the electrical level in the physical breadboard. For example, the
resistance between the terminals of a virtual resistor can be phys-
ically measured, and it amounts to the value indicated in the soft-
ware.

This is achieved by routing each connection on the breadboard
to a separate module that contains a bank of physical components,
and whose value can be controlled in software (see Figure 2). Re-
sembling [18], VirtualComponent works through a switching ma-
trix underneath the breadboard,which allows to pair any location
of the breadboard with any component on the external module.

Figure 2: VirtualComponent overall mechanism: virtual
components, which are physically located on a pluggable
module, can be connected in real-time to any point of the
system breadboard using two crosspoint switch arrays.

Thanks to its modular form-factor, VirtualComponent can be ex-
tended or customized to address makers’ specific needs. Examples
of virtual components include passive elements (resistors, capac-
itors, inductors…) but also active components such as integrated
circuits, sensors and instruments (e.g., function generator, voltage
meter).

The augmented reality interface consists of an application run-
ning on a tablet, with the rear camera capturing the video of the
system, while the software displays the virtual components as su-
perimposed graphical schematics symbol on the live video. Before
choosing augmented reality, we informally experimented with in-
direct mapping using an interface on a separate screen, and found
that components’ placement was non-trivial. For this reason, we
chose instead to use augmented reality as the main way to support
direct placement and manipulation of components on different lo-
cations of the breadboard.

4.1 Walkthrough scenario

Figure 3: Circuit schematics (left) and selection of the most
suitable module (right).

Alice is a maker with no formal education in electronics but
with some experience building simple circuits. As a fun project,
she decides to build an alarm clock that buzzes when it senses that
she is oversleeping — detecting when outside is brighter than in
her room. After some research online, she finds a suitable example
circuit (Figure 3) that uses two simple light dependent resistors
(LDRs) for sensing the relative brightness of two locations, and

an operational amplifier configured as a comparator to drive the
buzzer when one sensor is exposed to more light than the other.
The values of the components are not indicated in the schematics,
but Alice knows what components would be needed and chooses
the appropriate module among the available ones.

Figure 4: The virtual components are available after plug-
ging the module into the breadboard.

Alice powers up the VirtualComponent breadboard and starts
the software on the tablet. After plugging a module with various
components into the breadboard, she clicks the refresh button on
the screen and a list of available components appears on the tablet
display (Figure 4).

Figure 5: Building a Wheatstone bridge mixing both physi-
cal and virtual components.

She physically plugs two LDRs into the breadboard along with
the two terminals of a battery using jumper wires. She then drags
two virtual resistors over the breadboard and connects them to
form two voltage dividers with the LDRs (Figure 5).

Figure 6: Probing voltage after tuning the resistors’ values
with sliders. The values of the resistors can be constrained
to be equal (top) or controlled independently (bottom).

Using a dropdown list, she constrains their values to be equal
and then uses a slider to control their values simultaneously. From

her past experience, Alice knows that even identical LDRs have
different resistances due to tolerance levels and different exposure
to light. To test this difference, she connects the midpoints of the
two voltage dividers using a virtual voltage probe, constructing a
Wheatstone bridge. The probe reads a potential difference of -754
mV. In order to calibrate the two LDRs, she removes the constraints
across the resistors and individually tunes them so that the voltage
in the bridge comes close to zero (Figure 6).

Figure 7: The complete circuit is tested exposing the individ-
ual LDRs to a light source.

Finally, she plugs the operational amplifier and the buzzer into
the breadboard and uses a flashlight to test what happens when
light strikes one LDR. By further tuning the resistors, she obtains
a reliable circuit that produces a buzzing sound when one of the
sensors is struck by light and the other is not. The overall process
took only five to ten minutes (Figure 7).

5 IMPLEMENTATION
VirtualComponent is composed of three parts: 1) a physical mas-
ter board that manages signal routing on a breadboard, 2) a set
of physical swappable modules that contain the banks of compo-
nents, and 3) an augmented reality software running on a tablet.
Both hardware and software are open-source and can be found on
a Github repository9.

5.1 Hardware
Master board: The master board (Figure 8) consists of a standard
mini breadboard (45 x 35 mm) made of two symmetrical sides, each
with 15 parallel terminal strips. Each strip consists of a tin-plated
spring-clip that can hold five contact points (2.54 mm lead pitch).
Strips are directly soldered on a custom Printed Circuit Board (PCB)
and two vertical side busses that provide a ground reference (one
on each side of the breadboard). The PCB is routed such that all
strips on each side of the breadboard connect to the analog input
pins of two 16x16 crosspoint switch arrays (AD75019). The output
of both arrays on the other end, consists of 16 channels routed to
a module board through a terminal connector. Using an Arduino
Mini, we control the logic gates of the crosspoint switches, en-
abling the routing of any row of the breadboard to any of the pins
of a module board. Each connection through the AD75019 chip has
a default on-resistance of 150 ±20 Ω, while the chip can handle
power up to 1 W.

9https://github.com/makinteract/VirtualComponent

Figure 8: Exploded view of the VirtualComponent hardware.

The PCB also contains the circuitry for power management (12 V,
5 V, and 3.3 V level subcircuits), logic-level conversions, as well as a
Wi-Fi ESP8266 module, directly interfaced to the Arduino through
software serial at 57600 bps. When the system is powered, the Wi-
Fi module automatically creates a wireless access point used to in-
terface with a controlling tablet running the software. The PCB and
its components are housed in a 11 x 10 x 2.5 cm 3D-printed case
made of PolyLactic Acid (PLA) and are powered through a 12 V
power adapter. On the top surface of the housing, we attached an
AR marker for camera tracking.

Modules: The system supports the use of module boards, con-
taining different sets of components. A module is connected to the
master board through a 20-pin terminal header. Of those pins, 16
are used to route the connection between the actual components
on the module and the master board. Two pins are for power, and
two are for data communication through the I2C (Inter-Integrated
Circuit) protocol. A I2C compatible 256-Kbit EEPROM on board
is used to identify the module when it is plugged into the master
board. The rest of the module contains the bank of user compo-
nents, and it can be customized according to the user’s preferences.

Figure 9: A virtual resistor (left), inductor (center), and capac-
itor (right). Virtual resistors are created using potentiome-
ter ICs, and virtual inductors and capacitors are created by
chaining eight individual components in series or in paral-
lel. For example, the image shows a virtual inductor with
value of 11 µH and a virtual capacitor of 4.9 nF.

As an example, we built five modules with different configura-
tions to address a variety of needs. A module board can contain
variable or fixed components. The value of a variable component
can be tuned while that of fixed components cannot. The utility
of the latter is to provide an immediately available bank of com-
mon components (e.g., old-fashioned component samples books
or decade boxes) that can help users test alternatives in their de-
sign. One variable module contains eight variable resistors with
values from 360 Ω-100 kΩ. A second module contains two vari-
able resistors (360 Ω-100 kΩ), two variable capacitors (100 pF-12.3
nF and 10 nF-1.2 µF), one variable inductor (1-32 µH), one voltage
probe, and one function generator (with controllable amplitude,
frequency, offset and type of wave). For modules with fixed compo-
nents, we exploit values at lower tolerance levels (e.g., 1% resistor
tolerance), higher power dissipation (e.g., ? 1/4 W), and arbitrary
sets of components typically used by makers (e.g., diodes, Zener
diodes, switches, LEDs, wires, and sensors).

Technically, the virtual components in these modules are two-
terminal devices whose internal connection paths can be controlled
using several I2C compatible integrated circuits. Resistors were
implemented using a 256-position digital potentiometer (AD5241),
and inductors and capacitors were created using a port expander
(ADG715). The critical difference between the two approaches is
that, although resistance is generated within the digital potentiome-
ter chip, capacitance and inductance are generated by combining
(in series and in parallel) external capacitors (muRata GRM series)
and inductors (Wurẗh Electronics WE-LQS). Figure 9 shows that
by controlling the switches on the expander chip, inductors are
chained in series while capacitors are placed in parallel, resulting
in either the selection of individual components or the sum of their
values.

The voltage probe and function generator are examples of how
external instruments can also be integrated as modular compo-
nents. The voltage probe was implemented using an analog–to–
digital converter (ADS1110) that provides 16-bit resolution over a
±2.048V range. The function generator was achieved by directly
connecting the Digilent OpenScope MZ10 to the module. We con-
trol the scope with software over Wi-Fi to generate square, sine,
and triangular waves, with frequencies from 1Hz-50kHz, offset be-
tween ±1.5V and amplitude up to 3 Vpp.

Hardware stand: We also built an optional stand to help users
place and hold the tablet over the system. In fact, while prototyp-
ing and testing early versions of the system, we recognized that it
can be burdensome to hold a tablet over the breadboard for a pro-
longed period of time. Moreover, our original intention was to sup-
port users interacting with physical components with both hands.
Therefore, the stand is needed to free users from always having
one hand engaged with the tablet. We designed a custom stand for
the tablet that is firm enough to support touch interaction on the
tablet, and it can be rotated to leave plenty of room for the hands
to access the physical components on the breadboard.

The stand has a C-shape and is made of plexiglass and aluminum
profiles measuring 32 x 17 x 19 cm. The top plane is transparent so
that the tablet’s back-facing camera can see through and detect the

10https://store.digilentinc.com/openscope-mz-open-source-all-in-one-
instrumentation

Figure 10: The overall GUI and its parts.

AR marker on the master board. To facilitate placing components
on the breadboard, the top plate can also rotate and maintain its
position using the friction from two unpowered servo-motors.

5.2 Software: UI and features
VirtualComponent software is written in C# for Unity3D and runs
on a Samsung Galaxy Tab2 tablet. It serves two main purposes.
First, it provides an augmented graphical layer of virtual compo-
nents displayed on the top of a live-video streaming from the tablet’s
back camera. Second, it allows users to control the value of the vir-
tual components through several options displayed in the GUI (op-
tions panel). Hardware and software communicate through a Wi-
Fi connection initiated by the hardware at startup. Commands are
transmitted as JSON strings, and they represent either commands
(e.g., setting connections and values) or queries (e.g., reading status
or values).

The breadboard is tracked using an AR marker and the Vuforia
SDK11. This allows the software to match each point on the bread-
board to a distinct point in the graphical interface, to which com-
ponents can be connected. Users can move and rotate components
through the touchscreen interface as well as reset their values and
connections through a long tap. When manipulating components,
the live view stream is frozen to facilitate input, and it can be un-
frozen with a button. Available components on a module are dis-
played on the screen upon refreshing (Figure 10).

When the user starts the software, the tablet screen is mostly
empty except for three controlling buttons (refresh, unfreeze, and
connection status) and a window displaying the camera view. The
user can choose how close to keep the tablet from the breadboard.
If the hardware stand is used, the height is preset to display a
breadboard view, as in Figure 10. After plugging a module into
the master board and pressing the refresh button, the side screen
is populated with all the available virtual components on the cur-
rent module. The user can then move and rotate any virtual com-
ponent on the screen by touching and dragging them. Each virtual
component is drawn using schematics symbols and has two graph-
ical handles on the side that can be used to draw connections (e.g.,
lines) between the components and any location on the breadboard.
11https://www.vuforia.com

Figure 11: Options panels to select the values and options
for the function generator; example outputs captured by an
oscilloscope.

Moreover, once a component is selected (e.g., touched), the corre-
sponding option panel for the component is displayed on the top
of the screen, allowing users to control the component’s value and
set special properties.

Components’ values can be controlled using both sliders for con-
tinuous values (e.g., resistors and function generator), or check
boxes for discrete values that can be added up together (e.g., ca-
pacitors and inductor). It is also possible to constrain the values of
multiple components using a drop-down list so that any change
to one component immediately affects the other. We implemented
two kinds of constraints. When two resistors are constrained, their
values remain identical, a feature useful for voltage dividers or for
setting multiple pull-up resistors (Figure 12-top). In other words,
when the user changes the value of either resistor, the other resis-
tor’s value is automatically updated to maintain the equality con-
straint. Another type of constraint is between a resistor and a ca-
pacitor. When a resistor is constrained with a capacitor, the value
of the cutoff frequency from their combined use in an RC network
is updated automatically on the screen. This feature is useful when
designing filters (Figure 12-bottom).

Figure 12: Options panels to select the values for resistors
and capacitors. Resistors’s values are constrained to be equal
(top) and the cutoff frequency of an RC network is updated
upon constraining a resistor with a capacitor (bottom).

http:11https://www.vuforia.com

6 ACCURACY
As with typical solderless breadboards [23], our system has para-
sitic capacitance and contact resistance, but with larger values due
to the connections routed through the crosspoint switch array. Vir-
tual components therefore have an offset resistance of 300 Ω, inher-
ited from the chip’s internal switch-on resistance (150 ± 20 Ω per
terminal connection), and 96.8 pF parasitic capacitance. In practice,
these values are not problematic because offset values can usually
be accounted for in the design. Moreover, digital circuits typically
contain values of higher orders of magnitude (e.g., kilohm, micro-
farads), resulting in offsets within the 5% tolerance.

Table 2: Resistance and capacitance error rates.

Resistance (kΩ) Capacitance (nF)
Nominal Real Error % Nominal Real Error %

360 392 8.89% 0.1 0.1 4.2%
1.1 1.08 -1.82% 0.3 0.29 3.2%
5 4.91 -1.80% 0.63 0.6 4.5%

10.1 9.98 -1.19% 1.1 1.13 -3.0%
15.2 14.8 -2.63% 2.1 2.12 -0.9%
20.3 19.6 -3.45% 4.3 4.1 4.7%
30 29.7 -1.00% 10 10.1 -1.0%
50.3 49 -2.58% 32 30.4 5.0%
60 58.5 -2.50% 65 61.56 5.3%
70.2 68.7 -2.14% 112 112.55 -0.5%
80.3 78 -2.86% 212 215.1 -1.5%
90.1 88.2 -2.11% 432 435.9 -0.9%
99.8 99.2 -0.60% 1200 1228.9 -2.4%

Average (SD) -1.2% (0.03) 1.3% (0.03)

Table 2 shows the measurements for resistors and capacitors
across large value ranges. All measurements were performed on a
live circuit, with parasitic capacitance removed. Capacitance was
measured using a Keysight U1733C LCR meter running at 100 Hz-
100 kHz over the range of nominal values, with large values mea-
sured at low frequencies and small values measured at high fre-
quencies — C < 1 nF at 100 kHz, 1 : C < 10 nF at 10 kHz, 10 : C <
100 nF at 1 kHz, and anything above 100 nF at 100 Hz. We were un-
able to achieve stable readings for resistance using the LCR meter
or a multimeter, most likely because, differently from capacitance,

resistance was generated inside a live digital potentiometer chip.
Therefore, resistance measurements were performed using a fixed
voltage supply with a voltage divider (100 kΩ) followed by a 10-bit
analog-digital conversion (ADC)—a technique similar to that used
in old avometers12. We do not report measures of inductance, be-
cause the manufacture’s test condition required measurements at 1
MHz, which was beyond our lab equipment’s capabilities. Overall
system accuracy is above 98%, exceeding the typical 5% tolerance
level.

7 PRACTICAL EXAMPLE CIRCUITS
Based on the data collected in the formative study, we designed
eight circuits that demonstrate the practical usage of VirtualCom-
ponent for tuning one or multiple components’ values (Figure 13).
The first four circuits require only the adjustment of a single com-
ponent or two independent components. Circuits (a) and (b) re-
quire a variable resistor to tune the sensitivity of a sensor—a pho-
totransistor (PH) and or a force-sensing resistor (FSR) connected
through a transimpedance amplifier. The phototransistor calibra-
tion needs to consider ambient lighting, while the FSR should be
adjusted depending on the force exerted by the users. Both values
are unknown when designing the circuit and are often determined
empirically through experimentation. Circuit (c) shows the usage
of a Wheatstone bridge combined with a voltage probe to tune the
sensitivity of a light-dependent resistor (LDR), similar to the walk-
through example. Finally, circuit (d) shows a sinewave from the
function generator fed into a speaker through an amplifying tran-
sistor. The resistor is tuned according to the speaker’s impedance
and the intended loudness.

The second group of examples requires designers to simultane-
ously adjust multiple interdependent components. Example (e) is
a circuit with three differently colored LEDs (red, green, and yel-
low) with different forward voltages. To obtain the same bright-
ness across the LEDs, the current-limiting resistors have to be ad-
justed with respect to each other. Circuit (f) contains a low-pass fil-
ter that requires tuning the capacitor and resistor values together

12https://en.wikipedia.org/wiki/Avometer

Figure 13: Schematics and implementations for circuits requiring the tuning of a single resistor in combination with voltage
probe or function generator (a-d), or requiring the usage of multiple components (e-h). Virtual components are highlighted.

to filter the input signal (a 2 Hz square wave summed to a 2 kHz
signal of white noise). By selecting the correct cutoff frequency,
the LED stops flickering and distinctively blinks at 2 Hz. Circuit
(g) shows a 555 timer chip in an unstable mode: careful selection
of R1, R2, and C results in square waves with different frequencies
and duty cycles. Finally, circuit (h) shows several fixed components
(button, Zener diode, and LED) connected to an Arduino. Different
from the other examples, this circuit does not allow adjustment of
the components’ values, but it exemplifies how the VirtualCompo-
nent could assist makers in working with their typical tools (e.g.,
Arduino).

8	 INFORMAL EVALUATION
To collect users’ feedback and better understand the feasibility of
VirtualComponent, we conducted a pilot evaluation with twelve
makers. We recruited twelve students from our institution (six grad-
uate and six undergraduate) aged 20-32 (M: 25, SD: 3.3), with var-
ious education backgrounds (electronic engineering, design, com-
puter science, and mechanical engineering) and different years of
experience with circuits (M: 3.3, SD: 3).

After a brief introduction to VirtualComponent, each partici-
pant was asked to create and tune four circuits among the eight
presented in the previous session. Circuits were assigned in bal-
anced order so each participant experienced two circuits requiring
tuning of a single resistor and two circuits with multiple compo-
nents, resulting in all circuits being tested six times. We guided the
tuning task by asking users to achieve simple but specific goals—
for example, we asked them to tune the Wheatstone bridge (c) so
that the voltage probe reads zero volts and to tune the LEDs in
circuit (e) such that their brightness would be perceived similarly.
After completing the circuits, makers filled out a questionnaire and
were interviewed for elaboration on their experience. The experi-
ment took overall one hour, and participants were compensated
with 18 USD.

8.1 Results
Overall, makers spent on average 4’42” (SD: 1’11”) to build the cir-
cuits and 3’06” (SD: 1’41”) for tuning components’ values. Details
for each circuit are presented in Figure 14-top. On average, partici-
pants performed 20.3 (SD: 5.6) tuning operations before achieving
a result they were satisfied with. A visual inspection of the results
reveals that tuning a single component took about one third of
the circuit-building time and that tuning multiple components was
more challenging. However, these large variations are most likely
due not to the actual number of tuning operations, but instead to
the time participants needed to check the result after each tuning
operation—the more the components in the circuit, the longer it
took. Finally, when asked to compare the tuning experience with
VirtualComponent to their past experience without VirtualCompo-
nent, all makers strongly supported our system, as clearly visible
in Figure 14-bottom. The overall usability score assigned to Virtu-
alComponent through 5-point semantic scales is 4.7 of 5, SD: 0.6.

During the post hoc interviews, all participants remarked that
VirtualComponent is easy to learn and use and that wiring errors

Figure 14: Building and tuning time for all example circuits
(top). Usability evaluation of VirtualComponent (VC).

can be easily avoided. Several users compared their past experi-
ences of tuning a potentiometer to their experience with Virtual-
Component, saying, “Variable resistors are difficult to fine tune. It
is not easy to manually set the desired value of a potentiometer
[…] Moreover, it is difficult to see the final value without measur-
ing it” (P2). In contrast, they liked using a software slider to change
a resistor’s value and seeing the results in real time. P4 also added
that tuning multiple potentiometers is more difficult because it re-
quires synchronizing the rotation on multiple knobs, concluding
that VirtualComponent’s constraint feature is very helpful.

Several participants compared VirtualComponent to software
simulations. Because VirtualComponent is a bridge “between a soft-
ware and a physical system” (P7), it is “real hardware that can be
used right away” (P3) without any software parameters calibration
(e.g., SPICE). Finally, several users praised the small, modular, and
portable form of the system. They especially appreciated the porta-
bility of a single module carrying several components and having
a voltmeter and function generator without the burden of heavy
lab equipment.

9	 CONCLUSIONS, LIMITATIONS AND
FUTURE WORK

Circuit design is a popular activity among makers, but there are
currently no tools for quickly determining and tuning the circuit
components’ values. Through a formative study with seventeen
makers, we identified the need for supporting direct experimen-
tation with multiple components and values. Hence, we presented
VirtualComponent, a novel mixed-reality system that allows users
to easily place electronic parts on a breadboard and tune their val-
ues using augmented-reality software. These digital changes are
directly reflected in real time onto the underlying physical circuit.

By presenting several example circuits and by showing the results
of an informal user study with twelve participants, we demonstrate
VirtualComponent’s practicality and show that it saves users’ time
when tuning or determining components’ values.

Nevertheless, the current prototype presents several opportuni-
ties for improvements. The main limitation of the system is scala-
bility and a limited breadboard size. The system currently supports
eight two-terminal components, limited by the input/output capa-
bilities of the crosspoint switch arrays (16 channels). To increase
the number of available connections (and hence the breadboard
size), different hardware should be considered—larger crosspoint
switch arrays or even field programmable gate arrays (FPGAs) [24].
Moreover, although in this paper we have mainly presented exam-
ples of modules with two-terminal components, it is also possible
to use components with multiple pins. While current users could
modify the open-source design files of this project or print and
populate the available modules with different component values,
future work will investigate modules composed of multipin tran-
sistors, integrated circuits, sensors and electromechanical devices.

Another limitation of the system is the large offset values for on-
resistance and parasitic capacitance, as discussed in the Accuracy
section. Although we think that the available value ranges are suit-
able for most projects and within tolerance levels, chaining multi-
ple components in series can exacerbate this problem. Moreover,
if users want to use values outside the available ranges, currently
they only can place multiple virtual components in parallel (or in
series). When no combinations are possible, users can still rely on
traditional passive components that can be placed on the bread-
board without incurring added resistance or capacitance. Future
work will focus on using hardware with lower values or other solu-
tions to reduce parasitic interferences. Future work will also inves-
tigate how to support constraints across multiple or chained com-
ponents and improve connectivity solutions (e.g., faster wireless
communication, and dynamic IPs for supporting multiple devices).
Finally, future work will need to address limitations concerning
the overall form of the system and user experience, including the
ergonomics of the supporting hardware stand.

ACKNOWLEDGMENTS
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (NRF-2017R1D1A1B03035261).

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-

Circuits: Leveraging Generative Design to Enable Novices to Design and Build
Circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York, NY, USA, 331–342. https:
//doi.org/10.1145/3126594.3126637

[2] S. Arakliotis, D. G. Nikolos, and E. Kalligeros. 2016.	 LAWRIS: A rule-based
arduino programming system for young students. In Modern Circuits and Sys-
tems Technologies (MOCAST), 2016 5th International Conference on. IEEE, 1–4.
http://ieeexplore.ieee.org/abstract/document/7495150/

[3] Ayah Bdeir. 2009. Electronics As Material: LittleBits. In Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction (TEI ’09). ACM,
New York, NY, USA, 397–400. https://doi.org/10.1145/1517664.1517743

[4] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed Wires:
Investigating the Problems of End-User Developers in a Physical Computing
Task. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 3485–3497. https://doi.org/10.1145/
2858036.2858533

[5] Varun Perumal C and Daniel Wigdor. 2015.	 Printem: Instant Printed Circuit
Boards with Standard Office Printers & Inks. In Proceedings of the 28th An-
nual ACM Symposium on User Interface Software & Technology (UIST ’15).
ACM, New York, NY, USA, 243–251. https://doi.org/10.1145/2807442.2807511

[6] Alvaro Cassinelli and Daniel Saakes. 2017.	 Data Flow, Spatial Physical Com-
puting. In Proceedings of the Eleventh International Conference on Tangible, Em-
bedded, and Embodied Interaction (TEI ’17). ACM, New York, NY, USA, 253–259.
https://doi.org/10.1145/3024969.3024978

[7] Kayla DesPortes, Aditya Anupam, Neeti Pathak, and Betsy DiSalvo. 2016. Bit-
Blox: A Redesign of the Breadboard. ACM Press, 255–261. https://doi.org/10.
1145/2930674.2930708

[8] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David
Mellis, and Bj?rn Hartmann. 2016. The Toastboard: Ubiquitous Instrumenta-
tion and Automated Checking of Breadboarded Circuits. ACM Press, 677–686.
https://doi.org/10.1145/2984511.2984566

[9] Saul Greenberg and Chester Fitchett. 2001. Phidgets: Easy Development of Phys-
ical Interfaces Through Physical Widgets. In Proceedings of the 14th Annual ACM
Symposium on User Interface Software and Technology (UIST ’01). ACM, New York,
NY, USA, 209–218. https://doi.org/10.1145/502348.502388

[10] Björn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith Abdulla, Brandon
Burr, Avi Robinson-Mosher, and Jennifer Gee. 2006. Reflective physical proto-
typing through integrated design, test, and analysis. In Proceedings of the 19th
annual ACM symposium on User interface software and technology. ACM, 299–
308.

[11] Björn Hartmann, Scott R. Klemmer, Michael Bernstein, and Nirav Mehta. [n. d.].
d.tools: Visually Prototyping Physical UIs through Statecharts.

[12] Mark Hatch. 2014.	 The maker movement manifesto: Rules for innovation in the
new world of crafters, hackers, and tinkerers. McGraw-Hill Education New York.

[13] Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar Chugh, Jie Qi, Diana
Nowacka, and Yoshihiro Kawahara. 2014. Circuit stickers: peel-and-stick con-
struction of interactive electronic prototypes. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, 1743–1746.

[14] Y. Kato. 2010. Splish: A Visual Programming Environment for Arduino to Ac-
celerate Physical Computing Experiences. In 2010 Eighth International Confer-
ence on Creating, Connecting and Collaborating through Computing. 3–10. https:
//doi.org/10.1109/C5.2010.20

[15] Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook, Cheng Zhang, and Gre-
gory D. Abowd. 2013. Instant Inkjet Circuits: Lab-based Inkjet Printing to
Support Rapid Prototyping of UbiComp Devices. In Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
Comp ’13). ACM, New York, NY, USA, 363–372. https://doi.org/10.1145/2493432.
2493486

[16] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems across Hardware and Software. ACM
Press, 299–310. https://doi.org/10.1145/3126594.3126658

[17] David A. Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson, and Jie Qi.
2013. Microcontrollers As Material: Crafting Circuits with Paper, Conductive
Ink, Electronic Components, and an ”Untoolkit”. In Proceedings of the 7th Inter-
national Conference on Tangible, Embedded and Embodied Interaction (TEI ’13).
ACM, New York, NY, USA, 83–90. https://doi.org/10.1145/2460625.2460638

[18] Yoichi Ochiai. 2014. Visible breadboard: System for dynamic, programmable, and
tangible circuit prototyping with visible electricity. In International Conference
on Virtual, Augmented and Mixed Reality. Springer, 73–84. http://link.springer.
com/chapter/10.1007/978-3-319-07464-1_7

[19] Martin O’Hara. 1993. Modeling non-ideal inductors in SPICE. Newport Compo-
nents (1993).

[20] Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An Integrated
Approach for Embedding Electronics in Paper Designs. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 2457–2466. https://doi.org/10.1145/2702123.2702487

[21] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[22] Joel Sadler, Kevin Durfee, Lauren Shluzas, and Paulo Blikstein. 2015. Bloctopus:
A Novice Modular Sensor System for Playful Prototyping. ACM Press, 347–354.
https://doi.org/10.1145/2677199.2680581

[23] Paul Scherz. 2006. Practical electronics for inventors. McGraw-Hill, Inc.
[24] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scanalog: Interac-

tive Design and Debugging of Analog Circuits with Programmable Hardware.
ACM Press, 321–330. https://doi.org/10.1145/3126594.3126618

[25] Joshua G. Tanenbaum, Amanda M. Williams, Audrey Desjardins, and Karen
Tanenbaum. 2013. Democratizing Technology: Pleasure, Utility and Expressive-
ness in DIY and Maker Practice. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 2603–
2612. https://doi.org/10.1145/2470654.2481360

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3126594.3126637
http://ieeexplore.ieee.org/abstract/document/7495150/
https://doi.org/10.1145/1517664.1517743
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/2807442.2807511
https://doi.org/10.1145/3024969.3024978
https://doi.org/10.1145/2930674.2930708
https://doi.org/10.1145/2930674.2930708
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/502348.502388
https://doi.org/10.1109/C5.2010.20
https://doi.org/10.1109/C5.2010.20
https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/2493432.2493486
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/2460625.2460638
http://link.springer.com/chapter/10.1007/978-3-319-07464-1_7
http://link.springer.com/chapter/10.1007/978-3-319-07464-1_7
https://doi.org/10.1145/2702123.2702487
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2677199.2680581
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/2470654.2481360

[26] M. Tawfik, E. Sancristobal, S. Martin, R. Gil, G. Diaz, A. Colmenar, J. Peire, M.
Castro, K. Nilsson, J. Zackrisson, L. Hakansson, and I. Gustavsson. 2013. Virtual
Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of
Electronic Circuits on Breadboard. IEEE Transactions on Learning Technologies
6, 1 (Jan 2013), 60–72. https://doi.org/10.1109/TLT.2012.20

[27] Daniel Tetteroo, Iris Soute, and Panos Markopoulos. 2013. Five Key Challenges
in End-user Development for Tangible and Embodied Interaction. In Proceedings
of the 15th ACM on International Conference on Multimodal Interaction (ICMI ’13).
ACM, New York, NY, USA, 247–254. https://doi.org/10.1145/2522848.2522887

[28] N. Umetani and R. Schmidt. 2017. SurfCuit: Surface-Mounted Circuits on 3D
Prints. IEEE Computer Graphics and Applications 37, 3 (May 2017), 52–60. https:
//doi.org/10.1109/MCG.2017.40

[29] Nicolas Villar, James Scott, Steve Hodges, Kerry Hammil, and Colin Miller. 2012.
. NET gadgeteer: a platform for custom devices. In International Conference on
Pervasive Computing. Springer, 216–233.

[30] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-
Hao Liang, Yi-Ping Hung, and Mike Y. Chen. 2016. CircuitStack: Supporting
Rapid Prototyping and Evolution of Electronic Circuits. ACM Press, 687–695.
https://doi.org/10.1145/2984511.2984527

[31] Tianyi Wang, Ke Huo, Pratik Chawla, Guiming Chen, Siddharth Banerjee, and
Karthik Ramani. 2018. Plain2Fun: Augmenting Ordinary Objects with Interac-
tive Functions by Auto-Fabricating Surface Painted Circuits. In Proceedings of
the 2018 Designing Interactive Systems Conference (DIS ’18). ACM, New York, NY,
USA, 1095–1106. https://doi.org/10.1145/3196709.3196791

[32] Te-Yen Wu, Mike Y. Chen, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen, Yu-Chian
Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, and Yu-Chih Lin. 2017. Circuit-
Sense: Automatic Sensing of Physical Circuits and Generation of Virtual Cir-
cuits to Support Software Tools. ACM Press, 311–319. https://doi.org/10.1145/
3126594.3126634

[33] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen. 2017. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded Circuits. ACM Press, 343–
349. https://doi.org/10.1145/3126594.3126646

https://doi.org/10.1109/TLT.2012.20
https://doi.org/10.1145/2522848.2522887
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1145/3196709.3196791
https://doi.org/10.1145/3126594.3126634
https://doi.org/10.1145/3126594.3126634
https://doi.org/10.1145/3126594.3126646

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tools for circuit design and debugging
	2.2 Hardware and software toolkits for reducing complexity
	2.3 Tools for improved fabrication of circuits

	3 Formative study
	3.1 Interviews Findings

	4 Virtual Component overview and walkthrough
	4.1 Walkthrough scenario

	5 Implementation
	5.1 Hardware
	5.2 Software: UI and features

	6 Accuracy
	7 Practical example circuits
	8 Informal evaluation
	8.1 Results

	9 Conclusions, Limitations and future work
	Acknowledgments
	References

