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Figure 1: VirtualComponent allows placing and tuning electrical components in software, while the underlying physical circuit 
reflects these changes in real-time. Both external tools (OpenScopeMZ) and custom modules can be used as virtual components 
when plugged into the breadboard. 

ABSTRACT 
Prototyping electronic circuits is an increasingly popular activity, 
supported by researchers, who develop toolkits to improve the 
design, debugging, and fabrication of electronics. Although past 
work mainly dealt with circuit topology, in this paper we propose 
a system for determining or tuning the values of the circuit com-
ponents. Based on the results of a formative study with seven-
teen makers, we designed VirtualComponent, a mixed-reality tool 
that allows users to digitally place electronic components on a real 
breadboard, tune their values in software, and see these changes 
applied to the physical circuit in real-time. VirtualComponent is 
composed of a set of plug-and-play modules containing banks of 
components, and a custom breadboard managing the connections 
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and components’ values. Through demonstrations and the results 
of an informal study with twelve makers, we show that Virtual-
Component is easy to use and allows users to test components’ 
value configurations with little effort. 
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1 INTRODUCTION 
Circuit design is a complex activity that requires knowledge of 
electronics and the ability to integrate circuits with software and 
other hardware [27]. Thanks to the MakerMovement [12] and the 
growing popularity of DIY websites, circuit design has become 
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accessible to large communities of makers, hobbyists, and inter-
action designers [25]. Motivated by this growing community, re-
searchers have developed several systems to assist novice and ad-
vanced users in designing circuits. For example, researchers inves-
tigated tools that reduce the complexity of circuit design by us-
ing modular and self-contained programmable blocks [e.g., 3, 6, 9], 
platforms and materials for easier circuit fabrication [e.g., 15, 17, 
30], and tools for better real-time diagnostic and visualization [e.g., 
8, 10, 24, 33]. 

These efforts mainly help users design or debug the circuit topol-
ogy—the network describing how electronic components are con-
nected. However, topology issues are often partially mitigated by 
the numerous open-source repositories of circuits readily available 
online (e.g., Sparkfun1, AdaFruit2), and by widespread and popu-
lar communities [25] where makers can learn about electronics and 
share their results (e.g., Fab Labs3, Github4, Instructables5, MAKE6, 
etc.). Therefore, we question whether issues related to the topol-
ogy are the only challenges for most makers when building cir-
cuits; perhaps other problems are common. Following our hypoth-
esis and seeking to better understand the real needs of makers en-
gaged in circuit design, we conducted a set of formative interviews 
with seventeen participants of various expertise levels. We found 
evidence that makers spend a considerable portion of the circuit 
debugging time working on topological aspects of the circuit and 
trying to select or tune the values of specific components. This com-
plementary aspect of the circuit-design process is laborious and 
error-prone, and it often cannot be automated with software (e.g., 
SPICE) as simulations of nonideal components are complex [19]. 

In this paper, we present VirtualComponent (Figure 1), an in-
teractive mixed-reality system that allows makers to create bread-
boarded circuits by combining physical and virtual components. 
Users can place virtual components on a breadboard using an aug-
mented reality (AR) application. They can then adjust their values 
through software, and the changes are immediately reflected at the 
electrical level on the physical breadboard. In the rest of this pa-
per, we describe in detail the formative study that motivated Vir-
tualComponent’s design. We then present several cases that ben-
efit from VirtualComponent’s software-hardware integration and 
demonstrate, with an informal user study, that users can save de-
bugging time while freely exploring design alternatives. Finally, 
we discuss the system limitations and future directions. 

2 RELATED WORK 

2.1	 Tools for circuit design and debugging 
While solderless breadboards have been the de facto standard for 
circuit prototyping since the 1970s, researchers and companies have 
started adding digital functionalities to breadboards to create new 
powerful prototyping tools. Products like the Digilent Electron-
ics Explorer7 and the STEMTera8 are examples of commercially 

1https://github.com/sparkfun 
2https://github.com/adafruit 
3https://www.fablabs.io 
4https://github.com 
5https://www.instructables.com 
6https://makezine.com 
7https://digilentinc.com
8https://stemtera.com 

available smart breadboards. In research, ToastBoard [8], the Visi-
ble Breadboard [18], Bifröst [16], and CircuitSense [32] are exam-
ples of augmented breadboards that improve debugging with bet-
ter analysis and visualization of the circuit electrical status. Toast-
Board [8] can visualize in real time the voltage measurement across 
an entire breadboard and automatically diagnose specific classes 
of circuits. The Visible Breadboard [18] allows users to create and 
debug circuits on a custom grid of connectors that can be digi-
tally controlled and provide voltage information through visual 
feedback. Bifröst [16] is an integrated hardware and software de-
bugging environment for capturing programs and electrical behav-
iors of an embedded system. Finally, CircuitSense [32] is a bread-
board capable of automatically recognizing electronic components 
placed on it. These systems speed up the process of creating and 
debugging circuits with better visualization and diagnostics. How-
ever, the proposed features mainly address the circuit topology, 
rather than supporting users’ exploration of components’ values. 

Perhaps the systems that currently better address circuit-design 
issues beyond topology are Scanalog [24] and VISIR [26]. However, 
Scanalog exclusively deals with high-level modules that can be 
logically tweaked by programming logical blocks, rather than pas-
sive components such as resistors, capacitors, and inductors. More-
over, Scanalog does not support the physical component place-
ment of logical blocks on a breadboard or other physical work-
bench. VISIR allows the remote wiring and measuring of electronic 
circuits on a virtual breadboard using a relay switching matrix con-
nected to banks of physical components. However, VISIR’s users 
cannot tweak the values of individual components nor can they 
access the underlying physical breadboard, making it impossible 
to mix software-placed components with physical ones. Our work 
differs from these two because we focus on supporting the digi-
tal placement and tuning of passive components for breadboarded 
circuits through direct and physical manipulations. 

2.2	 Hardware and software toolkits for 
reducing complexity 

Faster and simpler circuit design can be achieved through hard-
ware and software abstractions that hide the implementation and 
construction details. Hardware abstraction is achieved using mod-
ular circuit-blocks that can be connected and programmed with 
high-level languages. Examples of this approach include Phidgets 
[9], Microsoft’s .NET Gadgeteers and DataFlow [6, 29]—all provid-
ing hardware-software integration with custom objects and blocks 
interoperability. BitBlox [7] extends the concept of widgets to the 
breadboard itself, with subcircuits placed on color-coded bread-
board modules. 

Software abstraction can also reduce the underlying hardware’s 
complexity. Software can directly interface with the hardware to 
provide simple, direct control of sensors from a computer [22], 
or even provide fully integrated authoring environments that al-
low users to design, test, and analyze complex and extensible pro-
totypes without low-level hardware knowledge [10, 11, 24]. Al-
ternatively, software can simplify micro-controller programming 
through graphical programming languages [2, 14, 21] and trigger-
actions rule-based behaviors [1]. Our work differs from all the 
above because we intend to support makers with full control of the 

http:8https://stemtera.com
http:7https://digilentinc.com
http:6https://makezine.com
http:5https://www.instructables.com
http:4https://github.com
http:3https://www.fablabs.io


circuit design and its components rather than providing a layer of 
abstraction. 

2.3 Tools for improved fabrication of circuits 
To simplify and speed up the process of creating physical circuit 
prototypes, researchers explored toolchains that leverage common 
printers and conductive materials. The Untoolkit [17], Inkjet Cir-
cuits [15], Circuit Stickers [13], PaperPulse [20], and Printem [5] 
are examples of pipelines that support the fast creation of com-
plex and multilayered circuits by printing them on paper with con-
ductive ink or on copper substrates. CircuitStack [30] combines 
the flexibility of ordinary solderless breadboard with the accuracy 
and speed of printed circuits, by stacking layers of circuits printed 
with conductive ink on paper placed underneath a breadboard that 
houses the components. The authors show that this system is easily 
reconfigurable, accurate, and supports faster assembly of circuits. 
Finally, researchers have also extended these tools to physical ob-
jects by creating methods that let circuits and electronics be em-
bedded directly in objects. SurfCircuit [28] integrates circuits in 3D 
printed models, while Plain2Fun [31] enables users to design cir-
cuits directly onto the surfaces of ordinary objects. Overall, these 
works demonstrate how better software-hardware integration sim-
plifies circuit design and fabrication. Our work follows this inte-
gration approach, but we aim to support makers with a tool that 
helps them select the circuits’ components values rather than their 
topology. 

3 FORMATIVE STUDY 
The tools described in the related work mainly assist makers in de-
signing and debugging circuit topology, such as determining how 
components should connect and how the current flows across the 
circuit’s nodes. Reflecting on our experience as makers, however, 
we genuinely question whether nontopological aspects of the cir-
cuit design may also play a significant challenge. 

To answer this question, we conducted a formative study of 
semistructured interviews with makers, aiming to identify typical 
design activities, common pitfalls, and needs. We asked them to 
describe a past project, the process for designing the circuit, how 
components were selected, and whether software simulation was 
used. We recruited 17 makers (four females) aged 20-32 (M: 25, SD: 

3.33) and split them into two groups (novice and advanced) accord-
ing to their level of experience and education (see Table 1). All par-
ticipants hold a bachelor degree in engineering, industrial design, 
or computer science, and they are currently either graduate stu-
dents or university employees. Novice makers have at most three 
years of experience, and advanced makers have four or more years 
of experience or are currently pursuing a graduate degree in elec-
tronic engineering. Participants were compensated with nine USD 
for their time. 

3.1 Interviews Findings 
We collected four hours of interviews transcribed and analyzed 
with an affinity diagram. Despite the different levels of expertise, 
both novice and advanced makers shared similar comments and ex-
periences. Novice participants expressed a mix of concerns about 
topological challenges (e.g., wiring) and the difficulties of selecting 
the right components’ values, but they also explained that the over-
all process is relatively straightforward because schematics and 
breadboard diagrams are readily available on internet websites and 
in books (N2, N3, N5, A15, A16). For example, five participants (N6, 
A9, A13, A14) explained that they make circuits from standalone 
modules purchased online, which are well documented with exam-
ples. With the exception of two advanced makers (A12, A16) who 
start the process from a simulation, all other participants said they 
directly port the circuit schematics to a breadboard and tune the 
components if needed. All participants remarked that many errors 
can occur at this stage of the process (e.g., wrong wiring, faulty 
components, wrong values), requiring time-consuming debugging 
with an oscilloscope (N6, A11). For example, N5 commented, “When 
testing on the breadboard, many problems can occur because of 
wrong wiring connections. Those are difficult!” while N7 expressed 
similar frustration by saying, “Wiring was an issue because I am 
not familiar with it. When there was a problem due to wiring, I 
was not able to figure out what caused it.” Although wiring prob-
lems are common among beginners [4], wiring issues can usually 
be solved with a bit of experience using existing debugging tools, 
as pointed out by N3: “I had to use a multimeter to test wiring 
connections because of many wiring problems.” 

Beyond wiring issues, makers reported spending considerable 
time determining and tuning the value of specific components (e.g., 

Table 1: Details about the makers participating in the formative study. 

Participant Level Gender Age Position Major Years experience Simulation software 

N1 
N2 
N3 
N4 
N5 
N6 
N7 
N8 

Novice 
Novice 
Novice 
Novice 
Novice 
Novice 
Novice 
Novice 

M 
M 
M 
M 
M 
M 
F 
M 

29 
20 
21 
23 
23 
23 
32 
22 

MS student 
Undergrad student 
Undergrad student 
Undergrad student 
Undergrad student 
Undergrad student 

PhD student 
Undergrad student 

Nuclear Eng. 
Electronic Eng. 
Electronic Eng. 
Mechanical Eng. 
Mechanical Eng. 

Material Science Eng. 
Industrial Design 
Mechanical Eng. 

3 
0.5 
2 
1 
1 
1 
2 
2 

-
Fritzing 

-
-

Fritzing 
-

Fritzing 
-

A9 
A10 
A11 
A12 
A13 
A14 
A15 
A16 
A17 

Advanced 
Advanced 
Advanced 
Advanced 
Advanced 
Advanced 
Advanced 
Advanced 
Advanced 

M 
F 
F 
M 
M 
M 
M 
M 
F 

26 
25 
25 
25 
31 
24 
28 
23 
25 

MS student 
MS student 
MS student 
MS student 

Fab lab admin 
MS student 
PhD student 

Undergrad student 
MS student 

Electronic Eng. 
Electronic Eng. 
Electronic Eng. 
Electronic Eng. 
Mechanical Eng. 
Mechanical Eng. 
Computer Science 
Mechanical Eng. 
Industrial Design 

3 
2 
2 
2 
8 
4 
4 
5 
7 

PADS 
PADS 

LabVIEW 
OrCAD 

Many SW 
Spice
Eagle
Eagle 

-



resistors, capacitors, inductors) either because they are not indi-
cated in the examples, or because they are coupled to other parts 
of the circuit. For example, N7 commented: “I search for the value 
on the internet but if I cannot find any solution, I change the value 
several times until the circuit works.” Generally, advanced makers 
initially select these values based on their experience or through 
calculations, and beginners seek help from peers or online commu-
nities. Regardless of experience, all makers empirically tune these 
values once the components are placed in the breadboard, depend-
ing on what components are at hand or on the intended result. For 
example, advanced maker A13 commented that he “first search cir-
cuits online then test. They usually work after some tuning itera-
tions.” 

Despite the apparent simplicity of the tuning process, makers 
agree that it is time consuming and error prone. In fact, compo-
nents’ values cannot always be computed or simulated. Specifi-
cally, the parameters for active components (e.g., operational am-
plifiers, transistors, etc.) and the readings from sensors cannot be 
easily estimated at the design table [19]. For example, maker A17 
described how she was unable to compute the optimal value of a 
resistor to be used with a force sensing resistor (e.g., FSR) without 
knowing the force applied in advance. She finally found a suitable 
value by trial-and-error. Maker A15 described his attempt to filter 
sensor data with a low-pass filter, which required empirically se-
lecting the cutoff frequency using a potentiometer. Several makers 
also remarked that components are not always readily available, 
which slows down the overall development: “I ordered some parts 
to test, but they did not work… so I had to wait two or three more 
days for the delivery of another order” (A9). 

In summary, our findings show that determining or tuning the 
value of components in a circuit is an unaddressed need. A tool 
to solve this issue should leverage on direct input and immediate 
output (e.g., placing parts on a physical breadboard and real-time 
execution) rather than a simulation to support experimentation 
with different components and values. The system should be able 
to handle multiple components simultaneously and provide a bank 
of different components and values to address various situations 
and avoid deadlocks. 

4	 VIRTUAL COMPONENT OVERVIEW AND 
WALKTHROUGH 

VirtualComponent is a modular mixed-reality tool that allows users 
to build a breadboarded circuit with a mix of physical and virtual 
components. Using an augmented-reality interface, users can place 
virtual components on a breadboard and then modify their values 
and properties in software. These actions are immediately reflected 
at the electrical level in the physical breadboard. For example, the 
resistance between the terminals of a virtual resistor can be phys-
ically measured, and it amounts to the value indicated in the soft-
ware. 

This is achieved by routing each connection on the breadboard 
to a separate module that contains a bank of physical components, 
and whose value can be controlled in software (see Figure 2). Re-
sembling [18], VirtualComponent works through a switching ma-
trix underneath the breadboard,which allows to pair any location 
of the breadboard with any component on the external module. 

Figure 2: VirtualComponent overall mechanism: virtual 
components, which are physically located on a pluggable 
module, can be connected in real-time to any point of the 
system breadboard using two crosspoint switch arrays. 

Thanks to its modular form-factor, VirtualComponent can be ex-
tended or customized to address makers’ specific needs. Examples 
of virtual components include passive elements (resistors, capac-
itors, inductors…) but also active components such as integrated 
circuits, sensors and instruments (e.g., function generator, voltage 
meter). 

The augmented reality interface consists of an application run-
ning on a tablet, with the rear camera capturing the video of the 
system, while the software displays the virtual components as su-
perimposed graphical schematics symbol on the live video. Before 
choosing augmented reality, we informally experimented with in-
direct mapping using an interface on a separate screen, and found 
that components’ placement was non-trivial. For this reason, we 
chose instead to use augmented reality as the main way to support 
direct placement and manipulation of components on different lo-
cations of the breadboard. 

4.1 Walkthrough scenario 

Figure 3: Circuit schematics (left) and selection of the most 
suitable module (right). 

Alice is a maker with no formal education in electronics but 
with some experience building simple circuits. As a fun project, 
she decides to build an alarm clock that buzzes when it senses that 
she is oversleeping — detecting when outside is brighter than in 
her room. After some research online, she finds a suitable example 
circuit (Figure 3) that uses two simple light dependent resistors 
(LDRs) for sensing the relative brightness of two locations, and 



an operational amplifier configured as a comparator to drive the 
buzzer when one sensor is exposed to more light than the other. 
The values of the components are not indicated in the schematics, 
but Alice knows what components would be needed and chooses 
the appropriate module among the available ones. 

Figure 4: The virtual components are available after plug-
ging the module into the breadboard. 

Alice powers up the VirtualComponent breadboard and starts 
the software on the tablet. After plugging a module with various 
components into the breadboard, she clicks the refresh button on 
the screen and a list of available components appears on the tablet 
display (Figure 4). 

Figure 5: Building a Wheatstone bridge mixing both physi-
cal and virtual components. 

She physically plugs two LDRs into the breadboard along with 
the two terminals of a battery using jumper wires. She then drags 
two virtual resistors over the breadboard and connects them to 
form two voltage dividers with the LDRs (Figure 5). 

Figure 6: Probing voltage after tuning the resistors’ values 
with sliders. The values of the resistors can be constrained 
to be equal (top) or controlled independently (bottom). 

Using a dropdown list, she constrains their values to be equal 
and then uses a slider to control their values simultaneously. From 

her past experience, Alice knows that even identical LDRs have 
different resistances due to tolerance levels and different exposure 
to light. To test this difference, she connects the midpoints of the 
two voltage dividers using a virtual voltage probe, constructing a 
Wheatstone bridge. The probe reads a potential difference of -754 
mV. In order to calibrate the two LDRs, she removes the constraints 
across the resistors and individually tunes them so that the voltage 
in the bridge comes close to zero (Figure 6). 

Figure 7: The complete circuit is tested exposing the individ-
ual LDRs to a light source. 

Finally, she plugs the operational amplifier and the buzzer into 
the breadboard and uses a flashlight to test what happens when 
light strikes one LDR. By further tuning the resistors, she obtains 
a reliable circuit that produces a buzzing sound when one of the 
sensors is struck by light and the other is not. The overall process 
took only five to ten minutes (Figure 7). 

5 IMPLEMENTATION 
VirtualComponent is composed of three parts: 1) a physical mas-
ter board that manages signal routing on a breadboard, 2) a set 
of physical swappable modules that contain the banks of compo-
nents, and 3) an augmented reality software running on a tablet. 
Both hardware and software are open-source and can be found on 
a Github repository9. 

5.1 Hardware 
Master board: The master board (Figure 8) consists of a standard 
mini breadboard (45 x 35 mm) made of two symmetrical sides, each 
with 15 parallel terminal strips. Each strip consists of a tin-plated 
spring-clip that can hold five contact points (2.54 mm lead pitch). 
Strips are directly soldered on a custom Printed Circuit Board (PCB) 
and two vertical side busses that provide a ground reference (one 
on each side of the breadboard). The PCB is routed such that all 
strips on each side of the breadboard connect to the analog input 
pins of two 16x16 crosspoint switch arrays (AD75019). The output 
of both arrays on the other end, consists of 16 channels routed to 
a module board through a terminal connector. Using an Arduino 
Mini, we control the logic gates of the crosspoint switches, en-
abling the routing of any row of the breadboard to any of the pins 
of a module board. Each connection through the AD75019 chip has 
a default on-resistance of 150 ±20 Ω, while the chip can handle 
power up to 1 W. 

9https://github.com/makinteract/VirtualComponent 



Figure 8: Exploded view of the VirtualComponent hardware. 

The PCB also contains the circuitry for power management (12 V, 
5 V, and 3.3 V level subcircuits), logic-level conversions, as well as a 
Wi-Fi ESP8266 module, directly interfaced to the Arduino through 
software serial at 57600 bps. When the system is powered, the Wi-
Fi module automatically creates a wireless access point used to in-
terface with a controlling tablet running the software. The PCB and 
its components are housed in a 11 x 10 x 2.5 cm 3D-printed case 
made of PolyLactic Acid (PLA) and are powered through a 12 V 
power adapter. On the top surface of the housing, we attached an 
AR marker for camera tracking. 

Modules: The system supports the use of module boards, con-
taining different sets of components. A module is connected to the 
master board through a 20-pin terminal header. Of those pins, 16 
are used to route the connection between the actual components 
on the module and the master board. Two pins are for power, and 
two are for data communication through the I2C (Inter-Integrated 
Circuit) protocol. A I2C compatible 256-Kbit EEPROM on board 
is used to identify the module when it is plugged into the master 
board. The rest of the module contains the bank of user compo-
nents, and it can be customized according to the user’s preferences. 

Figure 9: A virtual resistor (left), inductor (center), and capac-
itor (right). Virtual resistors are created using potentiome-
ter ICs, and virtual inductors and capacitors are created by 
chaining eight individual components in series or in paral-
lel. For example, the image shows a virtual inductor with 
value of 11 µH and a virtual capacitor of 4.9 nF. 

As an example, we built five modules with different configura-
tions to address a variety of needs. A module board can contain 
variable or fixed components. The value of a variable component 
can be tuned while that of fixed components cannot. The utility 
of the latter is to provide an immediately available bank of com-
mon components (e.g., old-fashioned component samples books 
or decade boxes) that can help users test alternatives in their de-
sign. One variable module contains eight variable resistors with 
values from 360 Ω-100 kΩ. A second module contains two vari-
able resistors (360 Ω-100 kΩ), two variable capacitors (100 pF-12.3 
nF and 10 nF-1.2 µF), one variable inductor (1-32 µH), one voltage 
probe, and one function generator (with controllable amplitude, 
frequency, offset and type of wave). For modules with fixed compo-
nents, we exploit values at lower tolerance levels (e.g., 1% resistor 
tolerance), higher power dissipation (e.g., ? 1/4 W), and arbitrary 
sets of components typically used by makers (e.g., diodes, Zener 
diodes, switches, LEDs, wires, and sensors). 

Technically, the virtual components in these modules are two-
terminal devices whose internal connection paths can be controlled 
using several I2C compatible integrated circuits. Resistors were 
implemented using a 256-position digital potentiometer (AD5241), 
and inductors and capacitors were created using a port expander 
(ADG715). The critical difference between the two approaches is 
that, although resistance is generated within the digital potentiome-
ter chip, capacitance and inductance are generated by combining 
(in series and in parallel) external capacitors (muRata GRM series) 
and inductors (Wurẗh Electronics WE-LQS). Figure 9 shows that 
by controlling the switches on the expander chip, inductors are 
chained in series while capacitors are placed in parallel, resulting 
in either the selection of individual components or the sum of their 
values. 

The voltage probe and function generator are examples of how 
external instruments can also be integrated as modular compo-
nents. The voltage probe was implemented using an analog–to– 
digital converter (ADS1110) that provides 16-bit resolution over a 
±2.048V range. The function generator was achieved by directly 
connecting the Digilent OpenScope MZ10 to the module. We con-
trol the scope with software over Wi-Fi to generate square, sine, 
and triangular waves, with frequencies from 1Hz-50kHz, offset be-
tween ±1.5V and amplitude up to 3 Vpp. 

Hardware stand: We also built an optional stand to help users 
place and hold the tablet over the system. In fact, while prototyp-
ing and testing early versions of the system, we recognized that it 
can be burdensome to hold a tablet over the breadboard for a pro-
longed period of time. Moreover, our original intention was to sup-
port users interacting with physical components with both hands. 
Therefore, the stand is needed to free users from always having 
one hand engaged with the tablet. We designed a custom stand for 
the tablet that is firm enough to support touch interaction on the 
tablet, and it can be rotated to leave plenty of room for the hands 
to access the physical components on the breadboard. 

The stand has a C-shape and is made of plexiglass and aluminum 
profiles measuring 32 x 17 x 19 cm. The top plane is transparent so 
that the tablet’s back-facing camera can see through and detect the 

10https://store.digilentinc.com/openscope-mz-open-source-all-in-one-
instrumentation 



Figure 10: The overall GUI and its parts. 

AR marker on the master board. To facilitate placing components 
on the breadboard, the top plate can also rotate and maintain its 
position using the friction from two unpowered servo-motors. 

5.2 Software: UI and features 
VirtualComponent software is written in C# for Unity3D and runs 
on a Samsung Galaxy Tab2 tablet. It serves two main purposes. 
First, it provides an augmented graphical layer of virtual compo-
nents displayed on the top of a live-video streaming from the tablet’s 
back camera. Second, it allows users to control the value of the vir-
tual components through several options displayed in the GUI (op-
tions panel). Hardware and software communicate through a Wi-
Fi connection initiated by the hardware at startup. Commands are 
transmitted as JSON strings, and they represent either commands 
(e.g., setting connections and values) or queries (e.g., reading status 
or values). 

The breadboard is tracked using an AR marker and the Vuforia 
SDK11. This allows the software to match each point on the bread-
board to a distinct point in the graphical interface, to which com-
ponents can be connected. Users can move and rotate components 
through the touchscreen interface as well as reset their values and 
connections through a long tap. When manipulating components, 
the live view stream is frozen to facilitate input, and it can be un-
frozen with a button. Available components on a module are dis-
played on the screen upon refreshing (Figure 10). 

When the user starts the software, the tablet screen is mostly 
empty except for three controlling buttons (refresh, unfreeze, and 
connection status) and a window displaying the camera view. The 
user can choose how close to keep the tablet from the breadboard. 
If the hardware stand is used, the height is preset to display a 
breadboard view, as in Figure 10. After plugging a module into 
the master board and pressing the refresh button, the side screen 
is populated with all the available virtual components on the cur-
rent module. The user can then move and rotate any virtual com-
ponent on the screen by touching and dragging them. Each virtual 
component is drawn using schematics symbols and has two graph-
ical handles on the side that can be used to draw connections (e.g., 
lines) between the components and any location on the breadboard. 
11https://www.vuforia.com 

Figure 11: Options panels to select the values and options 
for the function generator; example outputs captured by an 
oscilloscope. 

Moreover, once a component is selected (e.g., touched), the corre-
sponding option panel for the component is displayed on the top 
of the screen, allowing users to control the component’s value and 
set special properties. 

Components’ values can be controlled using both sliders for con-
tinuous values (e.g., resistors and function generator), or check 
boxes for discrete values that can be added up together (e.g., ca-
pacitors and inductor). It is also possible to constrain the values of 
multiple components using a drop-down list so that any change 
to one component immediately affects the other. We implemented 
two kinds of constraints. When two resistors are constrained, their 
values remain identical, a feature useful for voltage dividers or for 
setting multiple pull-up resistors (Figure 12-top). In other words, 
when the user changes the value of either resistor, the other resis-
tor’s value is automatically updated to maintain the equality con-
straint. Another type of constraint is between a resistor and a ca-
pacitor. When a resistor is constrained with a capacitor, the value 
of the cutoff frequency from their combined use in an RC network 
is updated automatically on the screen. This feature is useful when 
designing filters (Figure 12-bottom). 

Figure 12: Options panels to select the values for resistors 
and capacitors. Resistors’s values are constrained to be equal 
(top) and the cutoff frequency of an RC network is updated 
upon constraining a resistor with a capacitor (bottom). 

http:11https://www.vuforia.com


6 ACCURACY 
As with typical solderless breadboards [23], our system has para-
sitic capacitance and contact resistance, but with larger values due 
to the connections routed through the crosspoint switch array. Vir-
tual components therefore have an offset resistance of 300 Ω, inher-
ited from the chip’s internal switch-on resistance (150 ± 20 Ω per 
terminal connection), and 96.8 pF parasitic capacitance. In practice, 
these values are not problematic because offset values can usually 
be accounted for in the design. Moreover, digital circuits typically 
contain values of higher orders of magnitude (e.g., kilohm, micro-
farads), resulting in offsets within the 5% tolerance. 

Table 2: Resistance and capacitance error rates. 

Resistance (kΩ) Capacitance (nF) 
Nominal Real Error % Nominal Real Error % 

360 392 8.89% 0.1 0.1 4.2% 
1.1 1.08 -1.82% 0.3 0.29 3.2% 
5 4.91 -1.80% 0.63 0.6 4.5% 

10.1 9.98 -1.19% 1.1 1.13 -3.0% 
15.2 14.8 -2.63% 2.1 2.12 -0.9% 
20.3 19.6 -3.45% 4.3 4.1 4.7% 
30 29.7 -1.00% 10 10.1 -1.0% 
50.3 49 -2.58% 32 30.4 5.0% 
60 58.5 -2.50% 65 61.56 5.3% 
70.2 68.7 -2.14% 112 112.55 -0.5% 
80.3 78 -2.86% 212 215.1 -1.5% 
90.1 88.2 -2.11% 432 435.9 -0.9% 
99.8 99.2 -0.60% 1200 1228.9 -2.4% 

Average (SD) -1.2% (0.03) 1.3% (0.03) 

Table 2 shows the measurements for resistors and capacitors 
across large value ranges. All measurements were performed on a 
live circuit, with parasitic capacitance removed. Capacitance was 
measured using a Keysight U1733C LCR meter running at 100 Hz-
100 kHz over the range of nominal values, with large values mea-
sured at low frequencies and small values measured at high fre-
quencies — C < 1 nF at 100 kHz, 1 : C < 10 nF at 10 kHz, 10 : C < 
100 nF at 1 kHz, and anything above 100 nF at 100 Hz. We were un-
able to achieve stable readings for resistance using the LCR meter 
or a multimeter, most likely because, differently from capacitance, 

resistance was generated inside a live digital potentiometer chip. 
Therefore, resistance measurements were performed using a fixed 
voltage supply with a voltage divider (100 kΩ) followed by a 10-bit 
analog-digital conversion (ADC)—a technique similar to that used 
in old avometers12. We do not report measures of inductance, be-
cause the manufacture’s test condition required measurements at 1 
MHz, which was beyond our lab equipment’s capabilities. Overall 
system accuracy is above 98%, exceeding the typical 5% tolerance 
level. 

7 PRACTICAL EXAMPLE CIRCUITS 
Based on the data collected in the formative study, we designed 
eight circuits that demonstrate the practical usage of VirtualCom-
ponent for tuning one or multiple components’ values (Figure 13). 
The first four circuits require only the adjustment of a single com-
ponent or two independent components. Circuits (a) and (b) re-
quire a variable resistor to tune the sensitivity of a sensor—a pho-
totransistor (PH) and or a force-sensing resistor (FSR) connected 
through a transimpedance amplifier. The phototransistor calibra-
tion needs to consider ambient lighting, while the FSR should be 
adjusted depending on the force exerted by the users. Both values 
are unknown when designing the circuit and are often determined 
empirically through experimentation. Circuit (c) shows the usage 
of a Wheatstone bridge combined with a voltage probe to tune the 
sensitivity of a light-dependent resistor (LDR), similar to the walk-
through example. Finally, circuit (d) shows a sinewave from the 
function generator fed into a speaker through an amplifying tran-
sistor. The resistor is tuned according to the speaker’s impedance 
and the intended loudness. 

The second group of examples requires designers to simultane-
ously adjust multiple interdependent components. Example (e) is 
a circuit with three differently colored LEDs (red, green, and yel-
low) with different forward voltages. To obtain the same bright-
ness across the LEDs, the current-limiting resistors have to be ad-
justed with respect to each other. Circuit (f) contains a low-pass fil-
ter that requires tuning the capacitor and resistor values together 

12https://en.wikipedia.org/wiki/Avometer 

Figure 13: Schematics and implementations for circuits requiring the tuning of a single resistor in combination with voltage 
probe or function generator (a-d), or requiring the usage of multiple components (e-h). Virtual components are highlighted. 



to filter the input signal (a 2 Hz square wave summed to a 2 kHz 
signal of white noise). By selecting the correct cutoff frequency, 
the LED stops flickering and distinctively blinks at 2 Hz. Circuit 
(g) shows a 555 timer chip in an unstable mode: careful selection 
of R1, R2, and C results in square waves with different frequencies 
and duty cycles. Finally, circuit (h) shows several fixed components 
(button, Zener diode, and LED) connected to an Arduino. Different 
from the other examples, this circuit does not allow adjustment of 
the components’ values, but it exemplifies how the VirtualCompo-
nent could assist makers in working with their typical tools (e.g., 
Arduino). 

8	 INFORMAL EVALUATION 
To collect users’ feedback and better understand the feasibility of 
VirtualComponent, we conducted a pilot evaluation with twelve 
makers. We recruited twelve students from our institution (six grad-
uate and six undergraduate) aged 20-32 (M: 25, SD: 3.3), with var-
ious education backgrounds (electronic engineering, design, com-
puter science, and mechanical engineering) and different years of 
experience with circuits (M: 3.3, SD: 3). 

After a brief introduction to VirtualComponent, each partici-
pant was asked to create and tune four circuits among the eight 
presented in the previous session. Circuits were assigned in bal-
anced order so each participant experienced two circuits requiring 
tuning of a single resistor and two circuits with multiple compo-
nents, resulting in all circuits being tested six times. We guided the 
tuning task by asking users to achieve simple but specific goals— 
for example, we asked them to tune the Wheatstone bridge (c) so 
that the voltage probe reads zero volts and to tune the LEDs in 
circuit (e) such that their brightness would be perceived similarly. 
After completing the circuits, makers filled out a questionnaire and 
were interviewed for elaboration on their experience. The experi-
ment took overall one hour, and participants were compensated 
with 18 USD. 

8.1 Results 
Overall, makers spent on average 4’42” (SD: 1’11”) to build the cir-
cuits and 3’06” (SD: 1’41”) for tuning components’ values. Details 
for each circuit are presented in Figure 14-top. On average, partici-
pants performed 20.3 (SD: 5.6) tuning operations before achieving 
a result they were satisfied with. A visual inspection of the results 
reveals that tuning a single component took about one third of 
the circuit-building time and that tuning multiple components was 
more challenging. However, these large variations are most likely 
due not to the actual number of tuning operations, but instead to 
the time participants needed to check the result after each tuning 
operation—the more the components in the circuit, the longer it 
took. Finally, when asked to compare the tuning experience with 
VirtualComponent to their past experience without VirtualCompo-
nent, all makers strongly supported our system, as clearly visible 
in Figure 14-bottom. The overall usability score assigned to Virtu-
alComponent through 5-point semantic scales is 4.7 of 5, SD: 0.6. 

During the post hoc interviews, all participants remarked that 
VirtualComponent is easy to learn and use and that wiring errors 

Figure 14: Building and tuning time for all example circuits 
(top). Usability evaluation of VirtualComponent (VC). 

can be easily avoided. Several users compared their past experi-
ences of tuning a potentiometer to their experience with Virtual-
Component, saying, “Variable resistors are difficult to fine tune. It 
is not easy to manually set the desired value of a potentiometer 
[…] Moreover, it is difficult to see the final value without measur-
ing it” (P2). In contrast, they liked using a software slider to change 
a resistor’s value and seeing the results in real time. P4 also added 
that tuning multiple potentiometers is more difficult because it re-
quires synchronizing the rotation on multiple knobs, concluding 
that VirtualComponent’s constraint feature is very helpful. 

Several participants compared VirtualComponent to software 
simulations. Because VirtualComponent is a bridge “between a soft-
ware and a physical system” (P7), it is “real hardware that can be 
used right away” (P3) without any software parameters calibration 
(e.g., SPICE). Finally, several users praised the small, modular, and 
portable form of the system. They especially appreciated the porta-
bility of a single module carrying several components and having 
a voltmeter and function generator without the burden of heavy 
lab equipment. 

9	 CONCLUSIONS, LIMITATIONS AND 
FUTURE WORK 

Circuit design is a popular activity among makers, but there are 
currently no tools for quickly determining and tuning the circuit 
components’ values. Through a formative study with seventeen 
makers, we identified the need for supporting direct experimen-
tation with multiple components and values. Hence, we presented 
VirtualComponent, a novel mixed-reality system that allows users 
to easily place electronic parts on a breadboard and tune their val-
ues using augmented-reality software. These digital changes are 
directly reflected in real time onto the underlying physical circuit. 



By presenting several example circuits and by showing the results 
of an informal user study with twelve participants, we demonstrate 
VirtualComponent’s practicality and show that it saves users’ time 
when tuning or determining components’ values. 

Nevertheless, the current prototype presents several opportuni-
ties for improvements. The main limitation of the system is scala-
bility and a limited breadboard size. The system currently supports 
eight two-terminal components, limited by the input/output capa-
bilities of the crosspoint switch arrays (16 channels). To increase 
the number of available connections (and hence the breadboard 
size), different hardware should be considered—larger crosspoint 
switch arrays or even field programmable gate arrays (FPGAs) [24]. 
Moreover, although in this paper we have mainly presented exam-
ples of modules with two-terminal components, it is also possible 
to use components with multiple pins. While current users could 
modify the open-source design files of this project or print and 
populate the available modules with different component values, 
future work will investigate modules composed of multipin tran-
sistors, integrated circuits, sensors and electromechanical devices. 

Another limitation of the system is the large offset values for on-
resistance and parasitic capacitance, as discussed in the Accuracy 
section. Although we think that the available value ranges are suit-
able for most projects and within tolerance levels, chaining multi-
ple components in series can exacerbate this problem. Moreover, 
if users want to use values outside the available ranges, currently 
they only can place multiple virtual components in parallel (or in 
series). When no combinations are possible, users can still rely on 
traditional passive components that can be placed on the bread-
board without incurring added resistance or capacitance. Future 
work will focus on using hardware with lower values or other solu-
tions to reduce parasitic interferences. Future work will also inves-
tigate how to support constraints across multiple or chained com-
ponents and improve connectivity solutions (e.g., faster wireless 
communication, and dynamic IPs for supporting multiple devices). 
Finally, future work will need to address limitations concerning 
the overall form of the system and user experience, including the 
ergonomics of the supporting hardware stand. 
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