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Abstract

Creating objects with threads is commonly referred to as string art. It is typically
a manual, tedious work reserved for skilled artists. In this paper, we investi-
gate how to automatically fabricate string art pieces from one single continuous
thread in such a way that it looks like an input image. The proposed system
consists of a thread connection optimization algorithm and a custom-made fab-
rication machine. It allows casual users to create their own personalized string
art pieces in a fully automatic manner. Quantitative and qualitative evaluations
demonstrated our system can create visually appealing results.
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1 INTRODUCTION

Some species of spiders can build intriguing and sophisticated web structures using just a single continuous thread. For
example, Miagrammopes spiders in the family of Uloboridae can build webs consisting of as few as one sticky thread.1
Inspired by this spider's ability, we investigate how to automatically fabricate planar objects from one single continuous
thread (no cut, no glue) in such a way that it looks like an input image. For example, given a photo of a face, the goal is to
create a web-like object made of a single thread and resembling the input face (see Figure 1). Creating objects with threads
is commonly referred as string art. Creating string art pieces is typically a manual, tedious work. While casual people can
manually design and fabricate simple basic shapes, complex patterns can only be crafted by skilled artists. Designing the
thread pattern is a particularly challenging task because it requires to decide how to connect the thread, that is, connect
which pin to which pin and which order. Moreover, the manual fabrication itself can take up to numerous hours or even
days depending on the pattern complexity and the number of connections.
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FIGURE 1 (a) Input photo. (b) Simulation result obtained by the proposed thread connection optimization. (c) Our custom-made
fabrication machine to connect the thread according to this optimized set connections. (d) Photo of the fabricated object. Both the thread
connection optimization and the actual fabrication run in a fully automatic manner. The fabricated object has a diameter of 36 cm and is
made of one continuous thread (no cut, no glue), and the total thread length is around 200 meters

In this paper, we focus on planar thread object fabrication, just like spider webs. The fabrication is performed by arrang-
ing a single thread between pins located on the boundary of a planar support, such as a circle. The input is an image
provided by the user, such as a photo, drawing, or painting (Figure 1a). We then run the proposed thread connection
optimization algorithm to find in which order the thread must be connected to the pins so that the simulation result of
the optimized thread connection looks like the input image (see the rendered image in Figure 1b). We then fabricate the
thread object by physically connecting the thread to the pins using our custom-made machine (see Figure 1c). The output
is the fabricated version of the input image (see the photo of the fabricated object in Figure 1d).

Overall, our two main contributions are as follows.

• The full description of an automatic fabrication system using one single continuous thread (no cut, no glue). We
describe both the software (e.g., thread optimization) and hardware (e.g., our custom-made fabrication machine)
components in detail.

• We introduce and evaluate different thread optimization methods, including physical constraint-aware algorithms to
deal with the mechanical constraints of the machine.

Quantitative and qualitative evaluations will show that our system can create visually appealing results. In summary,
our system allows casual users for creating their personalized recreational string art from their own photos in a fully
automatic manner.

2 RELATED WORK

Fabrication In computer graphics and related fields, several exciting works have recently investigated unconven-
tional, inspiring computational fabrication of objects and art creation, such as knitting,2 thermoforming,3 stippled prints
with drone,4 perforated lampshades,5 spray painting,6 airbrush system,7 balloons,8 inflatable structures,9 tile decors,10 and
kites.11 Our work belongs to this line of works, and we present a fully automatic system to fabricate spider web-inspired
string art pieces.

In the context of string art, the artist Petros Vrellis* designed an algorithm to compute the pin connection. However,
his exact approach is not described, and the pins are connected by hand, which might take numerous hours or even
days. In contrast, we provide a full description of our thread optimization algorithm and present a custom-made fabri-
cation machine that can automatically connect the thread. Recently and independently of our work, Birsak et al.12 have
presented an automatic approach for the thread optimization and fabrication. However, their optimization is expressed
as a nonlinear binary least squares problem, which requires around 2–4 hr of computation. In contrast, our approach
takes just a few minutes. Moreover, they use an expensive, large-size industrial robot (more than 20,000 USD), whereas
our proposed DIY custom-made machine costs only around 120 USD. In addition, we introduce several extensions and
applications, such as multicolor string art pieces, multiview 3D objects, and stencils.

Computational art creation and image generation Computational methods have also been proposed for the
design and generation of recreational arts and images in various contexts such as pixel art,13 emerging images,14

*http://artof01.com/vrellis/
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camouflage images,15 shadow art,16 collage art,17 text art,18 spray painting,6 and airbrush,7 among many others. The main
difference is that our work considers a single continuous thread, which requires a dedicated optimization algorithm and
a fabrication machine.

Dithering and halftoning Generation of images with specific patterns has been studied in the contexts of dithering,
halftoning, or stippling. For example, halftoning is the process of generating a pattern of binary pixels that creates the
illusion of a continuous-tone image.19 Closely related is stippling where dots are drawn, both digitally20,21 or physically,4
in such a way that it looks like a target photo. Another interesting work is the generation of a QR code resembling an input
image.22 These works consider a discrete set of dots or pixels that can be individually optimized and drawn. In contrast,
we consider one single continuous physical thread, which requires dedicated software and hardware components.

3 PROPOSED APPROACH

In our setup, we consider a set of K pins (typically 200) uniformly distributed on the boundary of a circular support, and
one continuous thread of a single color. An example is shown in Figure 1c. In the following, we present our hardware and
software components.

3.1 Hardware
SpiderPrinter Our fabrication machine, called SpiderPrinter, is a custom-made turn-table machine that dispenses
a single thread around a circular transparent acrylic plate (Figure 2a). The plate contains pins protruding from its cir-
cumference, with every two adjacent pins forming a V cut (Figure 2b). SpiderPrinter operates through the synchronized
motions of two motors: first, a servomotor guides the thread to the top or bottom side of the plate and, second, a stepper
motor rotates the plate, effectively pulling the thread from one point of the circumference to another, forming a line.

Our proposed fabrication is composed of a sequence of thread lines placed alternatively on the top or bottom side of
the plate. Because the plate is transparent, the lines on both layers equally contribute to the final visual result. Compared
for example to winding the thread around a pin,12 the main advantage of our two-layer approach is its simplicity and
efficiency. For example, winding the thread around a pin would require more complex motion paths for the motors, more
complex mechanisms (higher degrees of freedom), more expensive components, and more challenging controls.12 In
contrast, our approach simply operates a sequence of in-plane rotations and up/down motions. An additional advantage
compared to winding is that it ensures that two consecutive lines always share exactly the same point on the circumference
(i.e, the bottom of the V cut), hence providing a “sharper” look of the object. In our design, the plate is directly attached to
the stepper motor's shaft with an adapter (Figure 2a), so that a thread on the bottom layer cannot possibly pass through the
plate's center. We will show that this physical constraint can simply be enforced in the thread connection optimization.

Hardware specifications SpiderPrinter consists of a 280×110×130 mm acrylic box containing several electrome-
chanical components (see Figure 3): a stepper motor, a microstepper driver, an analog servomotor, two cooling fans, a
thread dispenser, and an Arduino UNO controlling board connected through USB to a PC. The acrylic plate is screwed on a

FIGURE 2 (a) Overview of
our SpiderPrinter. (b) Top view
of the acrylic plate's pins.
(c) Side view of the servo-arm
motion from the top to the
bottom layer of the acrylic plate
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FIGURE 3 Inside view of our
SpiderPrinter

3D-printed 30-mm radius adapter made of PolyLactic Acid (PLA), which is fixed on the top of the shaft of a five-phase step-
ping motor (A15K-S545-G10 with 0.75A/Phase) capable of 15 kgf-cm torque. The microstepper controller (MD5-ND14)
drives the stepper motor with a 0.072◦ accuracy per step. Two small fans (SZH-GNP511, 5V at 0.14A, 6,000 RPM) are
attached next to the base of the stepper motor to provide cooling and to ensure an operational temperature between 30◦C
and 40◦C. A 25-mm-long PLA arm is attached to the shaft of a servomotor (FS5103B, 4.8V, 3 kg·cm) and is used to guide
the thread through the V cuts of the acrylic plate. The thread spool is placed on the back of the device, and two small
bearings ensure its fluid motion.

SpiderPrinter uses a circular 2T acrylic plate with a diameter of 36 cm that contains K = 200 equidistant pins protruding
from its circumference (length: 12 mm, thickness: 1.5 mm), with every two adjacent pins forming a V cut (Figure 2b).
The distance between two pins is 2 mm (1.8◦), which is large enough to comfortably allow the passage of the 3D-printed
arm (thickness: 1 mm) attached to the servomotor or the thread. The thread we used is a spun polyester thread 60S/3
(approximately 0.14 mm thick).

3.2 Software
In this section, we will present our thread connection optimization. Before going into the details of the algorithm, let
us first clarify the terminology. In the following, we use the term pins as a general term to refer to the elements where
the thread is attached, in our case, the bottom of the V cuts in the plate (Figure 2b). We call the line a part of the thread
connected between two pins (see Figure 4d). We interchangeably use the terms thread combination, arrangement, and
connection. The user-provided image is called input image or target image.

We now present how to compute the thread arrangement, that is, connect the thread from which pin to which pin and
in which order. We will introduce two different strategies for the thread optimization and compare them. We consider
a black thread and a white background. Therefore, the absence of thread in a part of the image is seen as white. An
important and interesting observation is that the perceived color tone depends on the arrangement of the threads, that is,
if many threads pass trough a certain part, then this part will be perceived as darker. This means that, even if the thread
has a single black color, humans can perceive variations of gray depending on the thread arrangement. Therefore, by
optimizing the thread arrangement, it is possible to control the perceived color tone.

FIGURE 4 Given an input
image (a), we convert it to a
canonical virtual circular
layout (b). A selected line on this
virtual circle (c) is used to
render the simulation result and
corresponds to one line on the
physical circle (d)
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3.2.1 Preprocessing
In a preprocessing step, we convert the input image to a canonical form with a virtual circular layout (see Figure 4). This
virtual circular layout represents the physical circular support and contains the same number K of virtual pins as on the
physical circle. First, we convert the input color image to grayscale, crop it to a square, and resize it to 2, 000×2, 000 pixels.
Then, we set the virtual circle at the center of the image. Now, the goal is to optimize the thread arrangement.

3.2.2 General algorithm
We introduce our general bottom-up optimization algorithm that iteratively adds lines (i.e., thread connections) one by
one in such a way that the “resemblance” to the target image increases (the resemblance will be formally defined later). It is
general in the sense that it is not tuned to a specific resemblance cost definition, and thus, different definitions can be used.
It is bottom-up because we start with an empty result (i.e., without any thread) and iteratively add thread connections.
While the proposed algorithm takes local decisions, experiments will show that it can provide visually satisfying results
in a short amount of time (in a couple of minutes, depending on the number of lines).

The proposed thread optimization algorithm is shown in Algorithm 1. The input is the user-provided target image It.
We first set the maximal number N of lines and the number K of pins. Typical values are N = 3, 000 lines and K = 200
pins, and all the results shown in this paper have been created with these values. The pins are uniformly distributed on the
virtual circle boundary and can be represented by an index from 1 to K. The output is the list of connections  containing
the optimized pin-to-pin connections. For initialization (Line 1),  is set to the pin of Index 1, without lack of generality.

At each iteration (the outer for loop at Line 4), we search for the best line locally, that is, the ith iteration optimizes the ith
line of the object. At each of these iterations, we test the thread connections between the previous pin PrevPin to all the K
pins (the inner for loop at Line 8), evaluate their cost (Line 10), and finally select the pin leading to the best cost (Line 11).
The selected best next pin is then added to the list of pin connections (Line 21). The cost is obtained at Line 10 and can be
computed in different ways, as will be discussed in Section 3.2.3. The function CheckAllowedConnection() at Line 9
tests if a pin connection is allowed. For example, if a connection between two pins is already in the list of selected lines,
then this connection is not allowed. More examples of use cases will be provided below. Finally, the procedure stops when
a stopping criterion is reached. Algorithm 1 in general stops when the maximum number of lines has been reached or
when no allowed combinations are found.
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3.2.3 Cost
The role of the function ComputeCost() (see Line 10 of Algorithm 1) is to compute the resemblance between the target
(input) image It and the resulting rendered image Ir composed of the set of optimized lines . In the following, we present
two kinds of cost we experimented with local scale and global scale.

Global scale Given a set of lines , we render an image composed of these lines. Considering a black thread and
a white background, we draw the lines by line rasterization23 in black over a white background image. We obtain the
rendered image Ir. We define the global scale cost as the tone cost between the rendered image Ir and the target (input)
image It, where the tone cost is computed as the pixelwise mean squared error (MSE) between the Gaussian-blurred
versions of the two images:

C(Ir, It) =
∑W

x=1
∑H

𝑦=1
(
g(Ir)x,𝑦 − g(It)x,𝑦

)2

W × H
, (1)

where g(I) is the Gaussian-blurred version of the image I, g(I)x,𝑦 is the pixel value of the blurred image g(I) at the position
(x, y), and H,W refer to the height and width of the image. In our implementation, we consider a grayscale version of the
images with values scaled between 0 and 1, and employ a Gaussian kernel of size 15 × 15. The range of the tone cost is
[0, 1], where a lower value indicates higher tone similarity. We use the difference of Gaussian-filtered images instead of
the difference of images to model the human visual perception along distance.22,24–26 We call this cost the global scale cost
because it considers information of the whole image; that is, when we test a pin connection, we render the whole image
composed of all the lines selected so far plus the currently tested pin, and we compare the whole rendered image to the
whole input image by the tone cost of Equation (1). We select the pin providing the lowest cost; then, we add it to the list
of lines, and we go for the next iteration/line.

In practice, while some implementation tricks can speed up the execution,† the global scale defined at Equation (1) is
computationally expensive. Indeed, at each iteration of the for loop at Line 8 (pin evaluation), it requires to create the
rendered image Ir (i.e., draw all the lines selected so far, plus the current pin), apply a Gaussian filter on the rendered
image Ir, and compute the MSE of the tone cost over the whole image. Overall, it is a computationally expensive process,
around 8 s per line for a typical number of K = 200 pins, which is around 7 hr in total for typically 3,000 line connections.
In the following, we will propose an alternative cost that runs around 70 times faster (around 6 min), with similar visual
quality.

Local scale For the local scale cost, we use local information of the image. Contrary to the global scale approach, we
start by rendering Ir using only the lines  selected so far, that is, without the current line (PrevPin,NextPin), and its
Gaussian-filtered version g(Ir). Therefore, this can be done outside the for loop of the pin evaluation (Line 8) and, thus,
is faster. Next, instead of computing the total MSE cost over the whole image (Equation 1), we compute the local signed
pixelwise tone difference at the pixel (x, y):

D(Ir, It)x,𝑦 = g(Ir)x,𝑦 − g(It)x,𝑦. (2)

The range of each signed tone difference is [−1, 1]. A positive value means that g(Ir)x,𝑦 > g(It)x,𝑦, that is, g(Ir)x,𝑦 is brighter
than g(It)x,𝑦, and so should be darker to resemble the target image more. Reciprocally, a negative value means that g(Ir)x,𝑦 <

g(It)x,𝑦, that is, g(Ir)x,𝑦 is darker than g(It)x,𝑦, and so should be brighter to resemble the target image more. Because our
method can only add lines, we can only make an image location darker, not brighter.

Based on the above explanation, our aim is to find a line that will make the part darker. For this, we test all the pin
combinations at Line 8 and select the one whose brightness is too bright compared to the target image so that we can
make it darker. Concretely, to compute the brightness of a line, we obtain the coordinates of the pixels along this line by
line rasterization23 and compute the cost based on the values of these pixels by Equation (2). We compute the line cost
as the average values (divided by the number of rasterized line pixels) to not indirectly favoring shorter segments. Finally
we select the line with the highest cost, that is, the most “too bright” line.

†In practice, the image Ir does not have to be rendered from scratch when testing a new combination, that is, at each iteration of the for loop at Line 8.
Indeed, it is possible to just draw the current line (PrevPin, NextPin) on top of the image composed of the lines  obtained so far at the previous
iteration i (Line 4). Alternative ways are also possible, such as “undrawing” the previously tested line and drawing the current line, which avoids creating
a duplicate of the image.
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In terms of implementation, as discussed above, the rendered image Ir and its Gaussian-filtered version g(Ir) are com-
posed of the lines obtained so far, at the previous iteration. Therefore, the tone difference at Equation (2) can be computed
once per iteration i, that is, outside the for loop of the pin tests (Line 8) and, thus, runs much faster than the global scale
computation. The cost of a line is thus reduced to a sum of values along the line, which is computationally cheap. We call
this cost the local scale cost because we use the local information along the line.

3.2.4 Physical constraints-aware optimization
The thread optimization described so far allows any pins to be virtually connected to any pins. In practice, our fabrication
machine has physical constraints that we need to take into account during the thread optimization.

First, as discussed in Section 3.1, our machine connects the thread by alternating top and bottom connections, that
is, the bottom layer contains the even connections and the top layer contains the odd connections. Because our plate
is transparent, the bottom and top layers are seamlessly combined and equally contribute to the final perceived result.
An important practical aspect is that the threads on the bottom layer cannot pass through the plate's center because the
plate's center is attached to the stepper motor's shaft (see Figure 2a). Therefore, the thread optimization must be adapted
to deal with this physical constraint. It can be implemented by a general function that checks if a connection is allowed:
The function CheckAllowedConnection(PrevPin,NextPin) at Line 9 returns True if the combination between
the pins PrevPin and NextPin is allowed, and returns False otherwise. For example, if the line defined by the pins
PrevPin and NextPin passes within 3 cm of the plate's center (approximately the motor's shaft radius) and is on the
bottom layer, then the function returns False and this connection will be skipped.

A second physical constraint is that two pins too close to each other should not be connected. In order to ensure that our
machine can pull a thread between any two pins and hold it firmly in place, we experimentally found that the minimum
distance between two consecutive pins should be no smaller than 5◦. The function CheckAllowedConnection() can
simply deal with this case by returning False when the distance between two pins is shorter than a threshold set to 5◦.

4 EXPERIMENTS

4.1 Implementation and hardware details
Our algorithm was implemented in Python (nonoptimized code) and runs on a laptop equipped with an Intel i7-4790K, a
4.0-GHz CPU, and 32 GB of RAM. Given the input photo provided by the user, the program automatically computes and
returns the optimized pin combination as well as a visualization of this pin combination (i.e., the rendered image Ir). The
duration of the pin optimization varies greatly with the choice of the cost function. It typically takes around 5–8 hr for the
global cost and just 4–6 min for the local cost, depending on the complexity of the input photo and the number of pins.
The fabrication takes between 1 and 3 hr, depending on the number of lines, with our current machine. If fabrication
time is an issue, the fabrication can be drastically sped up with faster motors and encoders. The total cost of the machine
is around 120 USD: Arduino (15 USD), motor driver (30 USD), motor (50 USD), servo (20 USD), plastic cables, cover, and
paint (5 USD). The fabrication cost of one thread object is composed of the supporting acrylic plate and the thread, which
is less than 10 USD in total.

4.2 Results
Figure 5 shows several representative results obtained by our approach (local cost) for various kinds of face appearance, in
terms of input materials (photos vs. paintings with different artistic styles, for example, expressionism for Van Gogh and
mannerism for El Greco), head orientations (frontal vs. three quarter views), facial hair (none vs. beard), facial expressions
(neutral vs. extreme with tongue stuck out), age (baby vs. adults), genders (male vs. female), and accessories (with/without
glasses and hat). Overall, the photos of the fabricated objects are visually satisfying, resemble the input images, and contain
recognizable features of the input faces.

4.2.1 Quantitative evaluation
We quantitatively evaluate and compare the results obtained by the global and local costs. While the local cost is used to
select the line, we can still compute the target global tone cost (after the line is selected). Therefore, we compare the two
costs in terms of global tone cost.
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FIGURE 5 Representative results obtained by the proposed approach. Top: input image. Middle: rendering of the thread optimization.
Bottom: photo of the fabricated object. From left to right: Van Gogh (self-portrait), Lenna (Lena Söderberg)‡, The Virgin Mary (by El Greco),
Audrey Hepburn, Mona Lisa (by Leonardo da Vinci), Albert Einstein, man with glasses, and the success baby meme§. We refer to them as
Van Gogh, Lenna, Mary, Hepburn, Mona Lisa, Einstein, Glasses, and Baby, respectively

FIGURE 6 Evolution of the global tone cost obtained by the local and global approaches. Iteration on the x-axis is equivalent to the
number of lines

Given a photo of the Mona Lisa painting, Figure 6a shows the evolution of the global tone cost where the connections
are selected by the global and local costs. The local cost reaches a minimum of 0.0110 of tone cost after 3,153 iterations
and the global cost a minimum of 0.0108 of tone cost after 4,547 iterations. It is interesting to see that, while the local
cost “indirectly” minimizes the global tone cost, its global tone cost is only about 2% higher than the “direct” global cost
method. Moreover, the pin optimization took around 6 hr for the global cost, but just around 4 min for the local cost. For
completeness, Figure 6b shows the evolution of the brightness difference cost of the selected lines. Figure 7 shows the
evolution of the thread result along the iterations of the algorithm for the local cost corresponding to Figure 6a.

The visual results corresponding to the minimum costs of Figure 6a are shown in Figure 8. We measure and compare
the PSNR on these images. The PSNR values of the images produced by the local (Figure 8b) and global (Figure 8c) costs

‡https://en.wikipedia.org/wiki/Lenna
§https://en.wikipedia.org/wiki/Success_Kid

https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Success_Kid
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FIGURE 7 Evolution of the thread result at every 750 iterations of the optimization. The target image is shown on the right

FIGURE 8 Given the Mona
Lisa painting as input (a), the
results obtained by the local
(b) and global (c) costs

are, respectively, 7.51 and 7.64. The relative PSNR difference is just 1.7%, which indicates that the results obtained by the
global and local costs are similar in terms of PSNR value.

4.2.2 Qualitative evaluation with users
In addition to quantitative evaluation, we also conducted a qualitative user study. We recruited 12 participants, and they
were shown the input photo, as well as the thread result computed by the global and local costs, in a random order.
For both costs, we showed the result when the minimum global tone cost is obtained (see Figure 6 and the discussion
in Section 4.2.1). We asked the participants to evaluate the satisfaction statement “I am satisfied with the overall visual
quality of the thread result” on a 5-point Likert scale: strongly disagree (1), disagree (2), neutral (3), agree (4), and strongly
agree (5). We also asked them to evaluate the resemblance statement “The thread result resembles the input photo” on
the same 5-point Likert scale. We conducted the study on all the input images of Figure 5.

The results of the user study are shown in Figure 9. In terms of satisfaction (Figure 9a), the ratings for the global and
local costs are respectively as follows: 57% (global) versus 68% (local) of the responses were 4 (agree) or higher, 86% versus
85% were 3 (neutral) or higher, and 14% (global) versus 15% (local) of the responses were negative (disagree or less). On
the whole, these ratings suggest that, first, both costs produce satisfying fabrication results overall and, second, both costs
lead to a similar level of satisfaction.

To further evaluate the results, Figure 9c shows the evaluation score for each of the input images. It shows that the score
range can be large for some input images (e.g., Van Gogh or Baby) and short for others (e.g., Mona Lisa or Mary).
Globally, eight out of the eight input images for both global and local costs have a median score equal to or higher than 3
(neutral).

User study results for the resemblance to the input photo are available in Figure 9b and Figure 9d. The ratings for the
global and local costs are respectively as follows: 65% (global) versus 68% (local) of the responses were 4 (agree) or higher,
88% versus 88% were 3 (neutral) or higher. On the whole, these ratings suggest that both costs provide a satisfying level of
resemblance to the input photo and, second, both costs lead to a similar level of resemblance perception. Figure 9d shows
the evaluation score for each of the input images. It shows that eight out of the eight input images for both global and
local costs have a median score higher than 3 (neutral) or even higher.

In conclusion, given the cost values, the PSNR values, the optimization duration, and the user study evaluation, we
conclude that the local cost is preferable over the global cost.
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FIGURE 9 User study results for the global and local strategies regarding satisfaction (left) and resemblance to the input photo (right),
overall (top) and per input photo (bottom). The result per input photo is displayed by a box plot where the median is drawn in red

4.3 Additional results
Due to page limit, we invite the readers to refer to the supplementary video and our project website¶ for additional results
and extensions. In the following, we provide short high-level information.

Multiview Our approach can be extended for multiview thread optimization where the sides of a 3D cube can show
different images depending on the viewpoint. We consider two input images and assign them on two nonfacing sides
of the cube. We render the cube side view from one viewpoint by projecting all the threads along this viewpoint. The
multiview cost is computed as the sum of the costs of the two views. For the 3D fabrication, the thread was manually
connected, as our current SpiderPrinter is designed for 2D patterns. The video shows a representative result with a 3D
cube where a circle is seen from the left view and a heart from the top view.

Colors The supplementary video shows an example of a logo composed of blue and red. We optimize and fabricate the
colors layer by layer. For the thread optimization, we first automatically decompose the input logo image into two images:
one containing the blue parts of the logo and one containing the red parts. Then, we compute the thread connection for
each of these two images independently. For the fabrication, the machine connects the red thread; then, we manually
change the red thread spool to the blue one, and then, the machine connects the blue thread.

Stencil Our approach can also be used as a stencil; see examples in the supplementary video for spray painting and
for personalized cake decoration by manually sprinkling sugar.

¶https://vcail.kaist.ac.kr/projects/SpiderWeb

https://vcail.kaist.ac.kr/projects/SpiderWeb
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4.4 Limitations and future work
In Section 3.2, we introduced a simple-yet-efficient thread optimization algorithm that provides visually satisfying results.
In future work, we plan to investigate advanced optimization algorithms to further improve the results quality. In partic-
ular, we believe that reinforcement learning has a great potential because it aims to maximize the cumulative long-term
reward rather than an immediate short-term reward.

Our current machine allows the fabrication using a thread of a single color at a time. Concretely, for multiple colors, it
requires the user to manually substitute the thread spool. Future work will investigate the usage of hardware mechanisms
for multicolor object fabrication, such as multiple arms, automatic spool switching mechanism, or thread colorization.

5 CONCLUSION

We have presented a computational fabrication system to create string art objects using one single thread in such a way
that it looks like an input image. Our system runs in a fully automatic manner: the user provides an image, the thread
connections are computed by our optimization algorithm, and then, our custom-made machine connects the thread.
Experiments with quantitative and qualitative evaluations have successfully demonstrated the quality of our results.
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